Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Stöhr, NEXAFS Spectroscopy ( Springer Verlag, 1992).
2. F. de Groot and A. Kotani, Core Level Spectroscopy of Solids ( CRC Press, 2008).
3. A. Nilsson and L. G. M. Petterson, “ Adsorbate electronic structure and bonding on metal surfaces,” in Chemical Bonding at Surfaces and Interfaces, edited by A. Nilsson, L. G. M. Petterson, and J. K. Nørskov ( Elsevier B. V., 2008).
4. P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.-Å. Näslund, T. K. Hirsch, L. Ojamäe, P. Glatzel, L. G. M. Pettersson, and A. Nilsson, “ The structure of the first coordination shell in liquid water,” Science 304, 995999 (2004).
5. J. D. Smith, C. D. Cappa, K. R. Wilson, B. M. Messer, R. C. Cohen, and R. J. Saykally, “ Energetics of hydrogen bond network rearrangements in liquid water,” Science 306, 851853 (2004).
6. A. Nilsson, D. Nordlund, I. Waluyo, N. Huang, H. Ogasawara, S. Kaya, U. Bergmann, L.-Å. Näslund, H. Öström, P. Wernet, K. Andersson, T. Schiros, and L. G. M. Pettersson, “ X-ray absorption spectroscopy and X-ray Raman scattering of water and ice; an experimental view,” J. Electron Spectrosc. Relat. Phenom. 177, 99129 (2010).
7. B. Winter, U. Hergenhahn, M. Faubel, O. Björneholm, and I. V. Hertel, “ Hydrogen bonding in liquid water probed by resonant Auger-electron spectroscopy,” J. Chem. Phys. 127, 094501 (2007).
8. D. Nordlund, H. Ogasawara, H. Bluhm, O. Takahashi, M. Odelius, M. Nagasono, L. G. M. Pettersson, and A. Nilsson, “ Probing the electron delocalization in liquid water and ice at attosecond time scales,” Phys. Rev. Lett. 99, 217406 (2007).
9. J.-H. Guo, Y. Luo, A. Augustsson, J.-E. Rubensson, C. Såthe, H. Ågren, H. Siegbahn, and J. Nordgren, “ X-Ray emission spectroscopy of hydrogen bonding and electronic structure of liquid water,” Phys. Rev. Lett. 89, 137402 (2002).
10. M. Odelius, H. Ogasawara, D. Nordlund, O. Fuchs, L. Weinhardt, F. Maier, E. Umbach, C. Heske, Y. Zubavichus, M. Grunze, J. Denlinger, L. G. M. Pettersson, and A. Nilsson, “ Ultrafast core-hole-induced dynamics in water probed by x-ray emission spectroscopy,” Phys. Rev. Lett. 94, 227401 (2005).
11. T. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi, L. G. M. Pettersson, A. Nilsson, and S. Shin, “ High resolution x-ray emission spectroscopy of liquid water: The observation of two structural motifs,” Chem. Phys. Lett. 460, 387400 (2008).
12. O. Fuchs, M. Zharnikov, L. Weinhardt, M. Blum, M. Weigand, Y. Zubavichus, M. Bär, F. Maier, J. Denlinger, C. Heske, M. Grunze, and E. Umbach, “ Isotope and temperature effects in liquid water probed by x-ray absorption and resonant x-ray emission spectroscopy,” Phys. Rev. Lett. 100, 027801 (2008).
13. K. M. Lange, R. Könnecke, S. Ghadimi, R. Golnak, M. A. Soldatov, K. F. Hodeck, A. Soldatov, and E. F. Aziz, “ High resolution x-ray emission spectroscopy of water and aqueous ions using the micro-jet technique,” Chem. Phys. 377, 15 (2010).
14. A. Nilsson, T. Tokushima, Y. Horikawa, Y. Harada, M. P. Ljungberg, S. Shin, and L. G. M. Pettersson, “ Resonant inelastic x-ray scattering of liquid water,” J. Electron Spectrosc. Relat. Phenom. 188, 84100 (2013).
15. Y. Harada, T. Tokushima, Y. Horikawa, O. Takahashi, H. Niwa, M. Kobayashi, M. Oshima, Y. Senba, H. Ohashi, K. T. Wikfeldt, A. Nilsson, L. G. M. Pettersson, and S. Shin, “ Selective probing of the OH or OD stretch vibration in liquid water using resonant inelastic soft-x-ray scattering,” Phys. Rev. Lett. 111, 193001 (2013).
16. M. Odelius, “ Molecular dynamics simulations of fine structure in oxygen K-edge x-ray emission spectra of liquid water and ice,” Phys. Rev. B 79, 144204 (2009).
17. M. Odelius, “ Information content in O[1s] K-edge x-ray emission spectroscopy of liquid water,” J. Phys. Chem. A 113, 81768181 (2009).
18. M. P. Ljungberg, L. G. M. Pettersson, and A. Nilsson, “ Vibrational interference effects in x-ray emission of a model water dimer: Implications for the interpretation of the liquid spectrum,” J. Chem. Phys. 134, 044513 (2011).
19. L. G. M. Pettersson, T. Tokushima, Y. Harada, O. Takahashi, S. Shin, and A. Nilsson, “ Comment on ‘Isotope and temperature effects in liquid water probed by x-ray absorption and resonant x-ray emission spectroscopy,’ Phys. Rev. Lett. 100, 249801 (2008).
20. O. Fuchs, M. Zharnikov, L. Weinhardt, M. Blum, M. Weigand, Y. Zubavichus, M. Bär, F. Maier, J. Denlinger, C. Heske, M. Grunze, and E. Umbach, “ Fuchs et al. Reply:,” Phys. Rev. Lett. 100, 249802 (2008).
21. J. Forsberg, J. Gråsjö, B. Brena, J. Nordgren, L.-C. Duda, and J.-E. Rubensson, “ Angular anisotropy of resonant inelastic soft x-ray scattering from liquid water,” Phys. Rev. B 79, 132203 (2009).
22. K. M. Lange, M. Soldatov, R. Golnak, M. Gotz, N. Engel, R. Könnecke, J.-E. Rubensson, and E. F. Aziz, “ X-ray emission from pure and dilute H2O and D2O in a liquid microjet: Hydrogen bonds and nuclear dynamics,” Phys. Rev. B 85, 155104 (2012).
23. L. Weinhardt, A. Benkert, F. Meyer, M. Blum, R. G. Wilks, W. Yang, M. Bär, F. Reinert, and C. Heske, “ Nuclear dynamics and spectator effects in resonant inelastic soft x-ray scattering of gas-phase water molecules,” J. Chem. Phys. 136, 144311 (2012).
24. J.-H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.-E. Rubensson, D. K. Shuh, H. Ågren, and J. Nordgren, “ Molecular structure of alcohol-water mixtures,” Phys. Rev. Lett. 91, 157401 (2003).
25. J.-H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.-E. Rubensson, D. Shuh, V. Zhuang, P. Ross, H. Ågren, and J. Nordgren, “ The molecular structure of alcohol-water mixtures determined by soft-x-ray absorption and emission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 137–140, 425428 (2004).
26. S. Kashtanov, A. Augustson, J.-E. Rubensson, J. Nordgren, H. Ågren, J.-H. Guo, and Y. Luo, “ Chemical and electronic structures of liquid methanol from x-ray emission spectroscopy and density functional theory,” Phys. Rev. B 71, 104205 (2005).
27. Schreck et al., “ Local valence electronic structure and extended potential energy surfaces of the hydrogen and covalent O-H bond from vibrational resolved resonant inelastic x-ray scattering,” Phys. Rev. B (to be submitted).
28. M. Tomšič, A. Jamnik, G. Fritz-Popovski, O. Glatter, and L. Vlček, “ Structural properties of pure simple alcohols from ethanol, propanol, butanol, pentanol, to hexanol: Comparing Monte Carlo simulations with experimental SAXS data,” J. Phys. Chem. B 111, 17381751 (2007).
29. J. Lehtola, M. Hakala, and K. Hämäläinen, “ Structure of liquid linear alcohols,” J. Phys. Chem. B 114, 64266436 (2010).
30. F. Gel'mukhanov and H. Ågren, “ Resonant x-ray Raman scattering,” Phys. Rep. 312, 87330 (1999).
31. S. Schreck, G. Gavrila, C. Weniger, and P. Wernet, “ A sample holder for soft x-ray absorption spectroscopy of liquids in transmission mode,” Rev. Sci. Instrum. 82, 103101 (2011).
32. K. Kunnus, I. Rajkovic, S. Schreck, W. Quevedo, S. Eckert, M. Beye, E. Suljoti, C. Weniger, C. Kalus, S. Grübel, M. Scholz, D. Nordlund, W. Zhang, R. W. Hartsock, K. J. Gaffney, W. F. Schlotter, J. J. Turner, B. Kennedy, F. Hennies, S. Techert, P. Wernet, and A. Föhlisch, “ A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources,” Rev. Sci. Instrum. 83, 123109 (2012).
33. K. R. Wilson, M. Cavalleri, B. S. Rude, R. D. Schaller, T. Catalano, A. Nilsson, R. J. Saykally, and L. G. M. Pettersson, “ X-ray absorption spectroscopy of liquid methanol microjets: Bulk electronic structure and hydrogen bonding network,” J. Phys. Chem. B 109, 1019410203 (2005).
34.See supplementary material at for the description of the interpolation of the high-energy tail of decay into electronic excited states in Figure 2(c), a discussion of the uncertainties and error bars in Figures 2 and 6, the alignment of the DOS in Eq. (4), details on the spectrum calculations for the methanol molecule and the TFY XA spectra of the linear alcohols.[Supplementary Material]
35. Y.-P. Sun, F. Hennies, A. Pietzsch, B. Kennedy, T. Schmitt, V. N. Strocov, J. Andersson, M. Berglund, J.-E. Rubensson, K. Aidas, F. Gel'mukhanov, M. Odelius, and A. Föhlisch, “ Intramolecular soft modes and intermolecular interactions in liquid acetone,” Phys. Rev. B 84, 132202 (2011).
36. F. Gel'mukhanov, T. Privalov, and H. Ågren, “ Collapse of vibrational structure in spectra of resonant x-ray Raman scattering,” Phys. Rev. A 56, 256264 (1997).
37. M. Neeb, J.-E. Rubensson, M. Biermann, and W. Eberhardt, “ Coherent excitation of vibrational wave functions observed in core hole decay spectra of O2, N2, and CO,” J. Electron Spectrosc. Relat. Phenom. 67, 261274 (1994).
38. F. Gel'mukhanov, H. Ågren, M. Neeb, J.-E. Rubensson, and A. Bringer, “ Integral properties of channel interference in resonant x-ray scattering,” Phys. Lett. A 211, 101108 (1996).
39. O. Björneholm, A. Nilsson, A. Sandell, B. Hernnäs, and N. Mårtensson, “ Determination of time scales for charge-transfer screening in physisorbed molecules,” Phys. Rev. Lett. 68, 18921895 (1992).
40. A. Naves de Brito, A. Naves de Brito, O. Björneholm, J. S. Neto, A. Machado, S. Svensson, A. Ausmees, S. J. Osborne, L. J. Sæthre, H. Aksela, O.-P. Sairanen, A. Kivimäki, E. Nõmmiste, and S. Aksela, “ Fast dissociation of resonantly core excited H2S studied by vibrational and temporal analysis of the Auger spectra,” J. Mol. Struct.: THEOCHEM 394, 135145 (1997).
41. P. A. Brühwiler, O. Karis, and N. Mårtensson, “ Charge-transfer dynamics studied using resonant core spectroscopies,” Rev. Mod. Phys. 74, 703740 (2002).
42. I. Hjelte, M. Piancastelli, C. Jansson, K. Wiesner, O. Björneholm, M. Bässler, S. Sorensen, and S. Svensson, “ Evidence of ultra-fast dissociation in ammonia observed by resonant Auger electron spectroscopy,” Chem. Phys. Lett. 370, 781788 (2003).
43. J.-E. Rubensson, “ RIXS dynamics for beginners,” J. Electron Spectrosc. Relat. Phenom. 110–111, 135151 (2000).
44. J. Tulkki and T. Åberg, “ Statistical theory of electronic Raman resonance scattering by oriented atoms,” J. Phys. B: At. Mol. Phys. 13, 33413360 (1980).
45. J. Tulkki and T. Åberg, “ Behaviour of Raman resonance scattering across the K x-ray absorption edge,” J. Phys. B: At. Mol. Phys. 15, L435L440 (1982).
46. J. Jiménez-Mier, J. van Ek, D. Ederer, T. Callcott, J. Jia, J. Carlisle, L. Terminello, A. Asfaw, and R. Perera, “ Dynamical behavior of x-ray absorption and scattering at the L edge of titanium compounds: Experiment and theory,” Phys. Rev. B 59, 26492658 (1999).
47. P. L. Cowan, “ Resonant x-ray Raman scattering from atoms and molecules,” in Resonant Anomalous X-Ray Scattering: Theory and Applications, edited by G. Materlik, C. J. Sparks, and K. Fischer ( North-Holland, Amsterdam, 1994).
48. J. J. Kas, J. J. Rehr, J. A. Soininen, and P. Glatzel, “ Real-space Green's function approach to resonant inelastic x-ray scattering,” Phys. Rev. B 83, 235114 (2011).
49. M. Magnuson, J.-E. Rubensson, A. Föhlisch, N. Wassdahl, A. Nilsson, and N. Mårtensson, “ X-ray fluorescence spectra of metals excited below threshold,” Phys. Rev. B 68, 045119 (2003).
50. H. Hayashi, R. Takeda, Y. Udagawa, T. Nakamura, H. Miyagawa, H. Shoji, S. Nanao, and N. Kawamura, “ Lifetime-broadening-suppressed/free XANES spectroscopy by high-resolution resonant inelastic x-ray scattering,” Phys. Rev. B 68, 045122 (2003).
51. H. Hayashi, “ Lifetime-broadening-suppressed selective XAFS spectroscopy,” Anal. Sci. 24, 1523 (2008).
52. J. Szlachetko, D. Ferri, V. Marchionni, A. Kambolis, O. V. Safonova, C. J. Milne, O. Kröcher, M. Nachtegaal, and J. , “ Subsecond and in situ chemical speciation of Pt/Al2O3 during oxidation-reduction cycles monitored by high-energy resolution off-resonant X-ray spectroscopy,” J. Am. Chem. Soc. 135, 1907119074 (2013).
53. J. Szlachetko, C. J. Milne, J. Hoszowska, J.-C. Dousse, W. Błachucki, J. , Y. Kayser, M. Messerschmidt, R. Abela, S. Boutet, C. David, G. Williams, M. Pajek, B. D. Patterson, G. Smolentsev, J. A. van Bokhoven, and M. Nachtegaal, “ Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse,” Struct. Dyn. 1, 021101 (2014).
54. C. Glover, T. Schmitt, M. Mattesini, M. Adell, L. Ilver, J. Kanski, L. Kjeldgaard, M. Agåker, N. Mårtensson, R. Ahuja, J. Nordgren, and J.-E. Rubensson, “ Stationary and dispersive features in resonant inelastic soft X-ray scattering at the Ge 3p resonances,” J. Electron Spectrosc. Relat. Phenom. 173, 103107 (2009).
55. A. Nilsson and N. Mårtensson, “ Initial and final state rules in x-ray spectroscopies of adsorbates,” Physica B 208–209, 1922 (1995).
56. H. Ågren, Y. Luo, F. Gel'mukhanov, and H. J. A. Jensen, “ Screening in resonant x-ray emission of molecules,” J. Electron Spectrosc. Relat. Phenom. 82, 125134 (1996).
57. P. Skytt, P. Glans, K. Gunnelin, J. Guo, J. Nordgren, Y. Luo, and H. Ågren, “ Role of screening and angular distributions in resonant x-ray emission of CO,” Phys. Rev. A 55, 134145 (1997).
58. V. Felicíssimo, I. Minkov, F. Guimarães, F. Gel'mukhanov, A. Cesar, and H. Ågren, “ A theoretical study of the role of the hydrogen bond on core ionization of the water dimer,” Chem. Phys. 312, 311318 (2005).
59. F. Gel'mukhanov, L. Mazalov, and A. Kondratenko, “ A theory of vibrational structure in the x-ray spectra of molecules,” Chem. Phys. Lett. 46, 133137 (1977).

Data & Media loading...


Article metrics loading...



In resonant inelastic soft x-ray scattering (RIXS) from molecular and liquid systems, the interplay of ground state structural and core-excited state dynamical contributions leads to complex spectral shapes that partially allow for ambiguous interpretations. In this work, we dissect these contributions in oxygen K-edge RIXS from liquid alcohols. We use the scattering into the electronic ground state as an accurate measure of nuclear dynamics in the intermediate core-excited state of the RIXS process. We determine the characteristic time in the core-excited state until nuclear dynamics give a measurable contribution to the RIXS spectral profiles to  = 1.2 ± 0.8 fs. By detuning the excitation energy below the absorption resonance we reduce the effective scattering time below , and hence suppress these dynamical contributions to a minimum. From the corresponding RIXS spectra of liquid methanol, we retrieve the “dynamic-free” density of states and find that it is described solely by the electronic states of the free methanol molecule. From this and from the comparison of normal and deuterated methanol, we conclude that the split peak structure found in the lone-pair emission region at non-resonant excitation originates from dynamics in the O–H bond in the core-excited state. We find no evidence that this split peak feature is a signature of distinct ground state structural complexes in liquid methanol. However, we demonstrate how changes in the hydrogen bond coordination within the series of linear alcohols from methanol to hexanol affect the split peak structure in the liquid alcohols.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd