Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/1/6/10.1063/1.4901228
1.
1. E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4250
2.
2. B. Koopmans, G. Malinowski, F. D. Longa, D. Steiauf, M. Fähnle, T. Roth, M. Cinchetti, and M. Aeschlimann, Nature Mater. 9, 259 (2010).
http://dx.doi.org/10.1038/nmat2593
3.
3. U. Bovensiepen and P. Kirchmann, Laser Photonics Rev. 6, 589 (2012).
http://dx.doi.org/10.1002/lpor.201000035
4.
4. T. Huber, S. Mariager, A. Ferrer, H. Schäfer, J. Johnson, S. Grübel, A. Lübcke, L. Huber, T. Kubacka, C. Dornes, C. Laulhe, S. Ravy, G. Ingold, P. Beaud, J. Demsar, and S. Johnson, Phys. Rev. Lett. 113, 026401 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.026401
5.
5. M. Först, R. Mankowsky, H. Bromberger, D. Fritz, H. Lemke, D. Zhu, M. Chollet, Y. Tomioka, Y. Tokura, R. Merlin, J. Hill, S. Johnson, and A. Cavalleri, Solid State Commun. 169, 24 (2013).
http://dx.doi.org/10.1016/j.ssc.2013.06.024
6.
6. S. Wall, D. Wegkamp, L. Foglia, K. Appavoo, J. Nag, R. F. Haglund, J. Stähler, and M. Wolf, Nat. Commun. 3, 721 (2012).
http://dx.doi.org/10.1038/ncomms1719
7.
7. C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, Phys. Rev. Lett. 53, 989 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.989
8.
8. C. Thomsen, H. Grahn, H. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.4129
9.
9. O. Wright and K. Kawashima, Phys. Rev. Lett. 69, 1668 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1668
10.
10. C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, Nature 398, 310 (1999).
http://dx.doi.org/10.1038/18631
11.
11. A. Rousse, C. Rischel, and J.-C. Gauthier, Rev. Mod. Phys. 73, 17 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.17
12.
12. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von Hoegen, and D. von der Linde, Nature 422, 287 (2003).
http://dx.doi.org/10.1038/nature01490
13.
13. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
http://dx.doi.org/10.1126/science.1104739
14.
14. H. A. Navirian, D. Schick, P. Gaal, W. Leitenberger, R. Shayduk, and M. Bargheer, Appl. Phys. Lett. 104, 021906 (2013).
http://dx.doi.org/10.1063/1.4861873
15.
15. R. Shayduk, M. Herzog, A. Bojahr, D. Schick, P. Gaal, W. Leitenberger, H. Navirian, M. Sander, J. Goldshteyn, I. Vrejoiu, and M. Bargheer, Phys. Rev. B 87, 184301 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.184301
16.
16. A. Loether, Y. Gao, Z. Chen, M. F. DeCamp, E. M. Dufresne, D. A. Walko, and H. Wen, Struct. Dyn. 1, 024301 (2014).
http://dx.doi.org/10.1063/1.4867494
17.
17. Y. Gao, Z. Chen, Z. Bond, A. Loether, L. E. Howard, S. LeMar, S. White, A. Watts, B. C. Walker, and M. F. DeCamp, Phys. Rev. B 88, 014302 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.014302
18.
18. D. Daranciang, M. J. Highland, H. Wen, S. M. Young, N. C. Brandt, H. Y. Hwang, M. Vattilana, M. Nicoul, F. Quirin, J. Goodfellow, T. Qi, I. Grinberg, D. M. Fritz, M. Cammarata, D. Zhu, H. T. Lemke, D. A. Walko, E. M. Dufresne, Y. Li, J. Larsson, D. A. Reis, K. Sokolowski-Tinten, K. A. Nelson, A. M. Rappe, P. H. Fuoss, G. B. Stephenson, and A. M. Lindenberg, Phys. Rev. Lett. 108, 087601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.087601
19.
19. D. Schick, M. Herzog, H. Wen, P. Chen, C. Adamo, P. Gaal, D. G. Schlom, P. G. Evans, Y. Li, and M. Bargheer, Phys. Rev. Lett. 112, 097602 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.097602
20.
20. M. Nicoul, U. Shymanovich, A. Tarasevitch, D. von der Linde, and K. Sokolowski-Tinten, Appl. Phys. Lett. 98, 191902 (2011).
http://dx.doi.org/10.1063/1.3584864
21.
21. M. DeCamp, D. Reis, A. Cavalieri, P. Bucksbaum, R. Clarke, R. Merlin, E. Dufresne, D. Arms, A. Lindenberg, A. MacPhee, Z. Chang, B. Lings, J. Wark, and S. Fahy, Phys. Rev. Lett. 91, 165502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.165502
22.
22. D. Reis, M. DeCamp, P. Bucksbaum, R. Clarke, E. Dufresne, M. Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M. Murnane, J. Larsson, T. Missalla, and J. Wark, Phys. Rev. Lett. 86, 3072 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3072
23.
23. S. Lee, A. Cavalieri, D. Fritz, M. Swan, R. Hegde, M. Reason, R. Goldman, and D. Reis, Phys. Rev. Lett. 95, 246104 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.246104
24.
24. A. Cavalleri, C. Siders, F. Brown, D. Leitner, C. Tóth, J. Squier, C. Barty, K. Wilson, K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde, and M. Kammler, Phys. Rev. Lett. 85, 586 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.586
25.
25. A. H. Zewail, Annu. Rev. Phys. Chem. 57, 65 (2006).
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104748
26.
26. P. Kostic, Y. Okada, N. Collins, Z. Schlesinger, J. Reiner, L. Klein, A. Kapitulnik, T. Geballe, and M. Beasley, Phys. Rev. Lett. 81, 2498 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2498
27.
27. C. v. Korff Schmising, A. Harpoeth, N. Zhavoronkov, Z. Ansari, C. Aku-Leh, M. Woerner, T. Elsaesser, M. Bargheer, M. Schmidbauer, I. Vrejoiu, D. Hesse, and M. Alexe, Phys. Rev. B 78, 60404 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.060404
28.
28. A. Bojahr, D. Schick, L. Maerten, M. Herzog, I. Vrejoiu, C. von Korff Schmising, C. Milne, S. L. Johnson, and M. Bargheer, Phys. Rev. B 85, 224302 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.224302
29.
29. M. Herzog, A. Bojahr, J. Goldshteyn, W. Leitenberger, I. Vrejoiu, D. Khakhulin, M. Wulff, R. Shayduk, P. Gaal, and M. Bargheer, Appl. Phys. Lett. 100, 94101 (2012).
http://dx.doi.org/10.1063/1.3688492
30.
30. M. Herzog, D. Schick, W. Leitenberger, R. Shayduk, R. M. van der Veen, C. J. Milne, S. L. Johnson, I. Vrejoiu, and M. Bargheer, New J. Phys. 14, 13004 (2012).
http://dx.doi.org/10.1088/1367-2630/14/1/013004
31.
31. J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics ( John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011).
32.
32. D. Schick, A. Bojahr, M. Herzog, R. Shayduk, C. von Korff Schmising, and M. Bargheer, Comput. Phys. Commun. 185, 651 (2014).
http://dx.doi.org/10.1016/j.cpc.2013.10.009
33.
33. I. Vrejoiu, G. Le Rhun, L. Pintilie, D. Hesse, M. Alexe, and U. Gösele, Adv. Mater. 18, 1657 (2006).
http://dx.doi.org/10.1002/adma.200502711
34.
34. S. Yamanaka, T. Maekawa, H. Muta, T. Matsuda, S.-i. Kobayashi, and K. Kurosaki, J. Solid State Chem. 177, 3484 (2004).
http://dx.doi.org/10.1016/j.jssc.2004.05.039
35.
35. Y. H. Ren, M. Trigo, R. Merlin, V. Adyam, and Q. Li, Appl. Phys. Lett. 90, 251918 (2007).
http://dx.doi.org/10.1063/1.2751130
36.
36. R. Bell and G. Rupprecht, Phys. Rev. 129, 90 (1963).
http://dx.doi.org/10.1103/PhysRev.129.90
37.
37. F. Zamponi, Z. Ansari, C. Korff Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, Appl. Phys. A 96, 51 (2009).
http://dx.doi.org/10.1007/s00339-009-5171-9
38.
38. D. Schick, A. Bojahr, M. Herzog, C. von Korff Schmising, R. Shayduk, W. Leitenberger, P. Gaal, and M. Bargheer, Rev. Sci. Instrum. 83, 25104 (2012).
http://dx.doi.org/10.1063/1.3681254
39.
39. D. Schick, R. Shayduk, A. Bojahr, M. Herzog, C. von Korff Schmising, P. Gaal, and M. Bargheer, J. Appl. Crystallogr. 46, 1372 (2013).
http://dx.doi.org/10.1107/S0021889813020013
40.
40. M. Herzog, D. Schick, P. Gaal, R. Shayduk, C. Korff Schmising, and M. Bargheer, Appl. Phys. A 106, 489 (2012).
http://dx.doi.org/10.1007/s00339-011-6719-z
41.
41. C. Kittel, Introduction to Solid State Physics, 7th ed. ( Wiley, New York, 1996).
42.
42. A. Bitsadzeor and D. Kalinichenko, A Collection of Problems on the Equations of Mathematical Physics ( Mir Publishers, Moscow, 1980).
http://aip.metastore.ingenta.com/content/aca/journal/sdy/1/6/10.1063/1.4901228
Loading
/content/aca/journal/sdy/1/6/10.1063/1.4901228
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/1/6/10.1063/1.4901228
2014-11-18
2016-06-30

Abstract

Using ultrafast X-ray diffraction, we study the coherent picosecond lattice dynamics of photoexcited thin films in the two limiting cases, where the photoinduced stress profile decays on a length scale larger and smaller than the film thickness. We solve a unifying analytical model of the strain propagation for acoustic impedance-matched opaque films on a semi-infinite transparent substrate, showing that the lattice dynamics essentially depend on two parameters: One for the spatial profile and one for the amplitude of the strain. We illustrate the results by comparison with high-quality ultrafast X-ray diffraction data of SrRuO films on SrTiO substrates.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/1/6/1.4901228.html;jsessionid=s0mEnfRApAOj71Nk68wXBNxJ.x-aip-live-03?itemId=/content/aca/journal/sdy/1/6/10.1063/1.4901228&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/1/6/10.1063/1.4901228&pageURL=http://scitation.aip.org/content/aca/journal/sdy/1/6/10.1063/1.4901228'
Right1,Right2,Right3,