Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/2/10.1063/1.4913585
1.
1. A. Rousse, C. Rischel, and J. Gauthier, “ Colloquium: Femtosecond x-ray crystallography,” Rev. Mod. Phys. 73, 17 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.17
2.
2. L. X. Chen, W. J. Jäger, G. Jennings, D. J. Gosztola, A. Munkholm, and J. P. Hessler, “ Capturing a photoexcited molecular structure through time-domain x-ray absorption fine structure,” Science 292, 262 (2001).
http://dx.doi.org/10.1126/science.1057063
3.
3. M. Bargheer, N. Zhavoronkov, M. Woerner, and T. Elsaesser, “ Recent progress in ultrafast X-ray diffraction,” Chemphyschem 7, 783 (2006).
http://dx.doi.org/10.1002/cphc.200500591
4.
4. R. W. Schoenlein, “ Generation of femtosecond pulses of synchrotron radiation,” Science 287, 2237 (2000).
http://dx.doi.org/10.1126/science.287.5461.2237
5.
5. S. Khan, K. Holldack, T. Kachel, R. Mitzner, and T. Quast, “ Femtosecond undulator radiation from sliced electron bunches,” Phys. Rev. Lett. 97, 074801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.074801
6.
6. P. Beaud, S. Johnson, A. Streun, R. Abela, D. Abramsohn, D. Grolimund, F. Krasniqi, T. Schmidt, V. Schlott, and G. Ingold, “ Spatiotemporal stability of a femtosecond hard–x-ray undulator source studied by control of coherent optical phonons,” Phys. Rev. Lett. 99, 174801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.174801
7.
7. B. W. J. McNeil and N. R. Thompson, “ X-ray free-electron lasers,” Nat. Photonics 4, 814 (2010).
http://dx.doi.org/10.1038/nphoton.2010.239
8.
8. F. Ráksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Coté, and J.-C. Kieffer, “ Ultrafast x-ray absorption probing of a chemical reaction,” J. Chem. Phys. 104, 6066 (1996).
http://dx.doi.org/10.1063/1.471305
9.
9. T. Lee, Y. Jiang, C. G. Rose-Petruck, and F. Benesch, “ Ultrafast tabletop laser-pump-x-ray probe measurement of solvated Fe(CN)64−,” J. Chem. Phys. 122, 84506 (2005).
http://dx.doi.org/10.1063/1.1852455
10.
10. J. Chen, H. Zhang, I. V. Tomov, X. Ding, and P. M. Rentzepis, “ Electron transfer and dissociation mechanism of ferrioxalate: A time resolved optical and EXAFS study,” Chem. Phys. Lett. 437, 50 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.02.005
11.
11. C. Rose-Petruck, R. Jimenez, and T. Guo, “ Picosecond-milliangström lattice dynamics measured by ultrafast X-ray diffraction,” Nature 398, 310 (1999).
http://dx.doi.org/10.1038/18631
12.
12. N. Zhavoronkov, Y. Gritsai, M. Bargheer, M. Woerner, T. Elsaesser, F. Zamponi, I. Uschmann, and E. Förster, “ Microfocus Cu K(alpha) source for femtosecond x-ray science.,” Opt. Lett. 30, 1737 (2005).
http://dx.doi.org/10.1364/OL.30.001737
13.
13. Y. Jiang, T. Lee, W. Li, G. Ketwaroo, and C. G. Rose-Petruck, “ High-average-power 2-kHz laser for generation of ultrashort x-ray pulses,” Opt. Lett. 27, 963 (2002).
http://dx.doi.org/10.1364/OL.27.000963
14.
14. E. Fill, J. Bayerl, and R. Tommasini, “ A novel tape target for use with repetitively pulsed lasers,” Rev. Sci. Instrum. 73, 2190 (2002).
http://dx.doi.org/10.1063/1.1468685
15.
15. F. Zamponi, Z. Ansari, C. K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “ Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51 (2009).
http://dx.doi.org/10.1007/s00339-009-5171-9
16.
16. M. Silies, H. Witte, S. Linden, J. Kutzner, I. Uschmann, E. Förster, and H. Zacharias, “ Table-top kHz hard X-ray source with ultrashort pulse duration for time-resolved X-ray diffraction,” Appl. Phys. A 96, 59 (2009).
http://dx.doi.org/10.1007/s00339-009-5172-8
17.
17. W. Fullagar, M. Harbst, S. Canton, J. Uhlig, M. Walczak, C.-G. Wahlström, and V. Sundström, “ A broadband laser plasma x-ray source for application in ultrafast chemical structure dynamics,” Rev. Sci. Instrum. 78, 115105 (2007).
http://dx.doi.org/10.1063/1.2813340
18.
18. R. J. Tompkins, I. P. Mercer, M. Fettweis, C. J. Barnett, D. R. Klug, L. G. Porter, I. Clark, S. Jackson, P. Matousek, A. W. Parker, and M. Towrie, “ 5–20 keV laser-induced x-ray generation at 1 kHz from a liquid-jet target,” Rev. Sci. Instrum. 69, 3113 (1998).
http://dx.doi.org/10.1063/1.1149120
19.
19. K. Hatanaka, T. Miura, and H. Fukumura, “ Ultrafast x-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” Appl. Phys. Lett. 80, 3925 (2002).
http://dx.doi.org/10.1063/1.1482135
20.
20. G. Korn, A. Thoss, H. Stiel, U. Vogt, M. Richardson, T. Elsaesser, and M. Faubel, “ Ultrashort 1-kHz laser plasma hard x-ray source,” Opt. Lett. 27, 866 (2002).
http://dx.doi.org/10.1364/OL.27.000866
21.
21. C. Reich, C. M. Laperle, X. Li, B. Ahr, F. Benesch, and C. G. Rose-Petruck, “ Ultrafast x-ray pulses emitted from a liquid mercury laser target.,” Opt. Lett. 32, 427 (2007).
http://dx.doi.org/10.1364/OL.32.000427
22.
22. J. Uhlig, C.-G. Wahlström, M. Walczak, V. Sundström, and W. Fullagar, “ Laser generated 300 keV electron beams from water,” Laser Part. Beams 29, 415 (2011).
http://dx.doi.org/10.1017/S0263034611000516
23.
23. M. Bargheer, N. Zhavoronkov, R. Bruch, H. Legall, H. Stiel, M. Woerner, and T. Elsaesser, “ Comparison of focusing optics for femtosecond X-ray diffraction,” Appl. Phys. B 80, 715 (2005).
http://dx.doi.org/10.1007/s00340-005-1792-7
24.
24. U. Shymanovich, M. Nicoul, K. Sokolowski-Tinten, A. Tarasevitch, C. Michaelsen, and D. von der Linde, “ Characterization and comparison of X-ray focusing optics for ultrafast X-ray diffraction experiments,” Appl. Phys. B 92, 493 (2008).
http://dx.doi.org/10.1007/s00340-008-3138-8
25.
25. I. V. Tomov, J. Chen, X. Ding, and P. M. Rentzepis, “ Efficient focusing of hard X-rays generated by femtosecond laser driven plasma,” Chem. Phys. Lett. 389, 363 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.03.087
26.
26. R. Tommasini, R. Bruch, E. Fill, and A. Bjeoumikhov, “ Convergent-beam diffraction of ultra-short hard X-ray pulses focused by a capillary lens,” Appl. Phys. B 82, 519 (2006).
http://dx.doi.org/10.1007/s00340-005-2105-x
27.
27. J. N. Ullom, J. A. Beall, W. B. Doriese, W. D. Duncan, L. Ferreira, G. C. Hilton, K. D. Irwin, C. D. Reintsema, and L. R. Vale, “ Optimized transition-edge x-ray microcalorimeter with 2.4 eV energy resolution at 5.9 keV,” Appl. Phys. Lett. 87, 194103 (2005).
http://dx.doi.org/10.1063/1.2061865
28.
28. J. Uhlig, W. Fullagar, J. N. Ullom, W. B. Doriese, J. W. Fowler, D. S. Swetz, N. Gador, S. E. Canton, K. Kinnunen, I. J. Maasilta, C. D. Reintsema, D. A. Bennett, L. R. Vale, G. C. Hilton, K. D. Irwin, D. R. Schmidt, and V. Sundström, “ Table-top ultrafast x-ray microcalorimeter spectrometry for molecular structure,” Phys. Rev. Lett. 110, 138302 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.138302
29.
29. P. Gibbon and A. R. Bell, “ Collisionless absorption in sharp-edged plasmas,” Phys. Rev. Lett. 68, 1535 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.1535
30.
30. W. Fullagar, J. Uhlig, M. Walczak, S. Canton, and V. Sundström, “ The use and characterization of a backilluminated charge-coupled device in investigations of pulsed x-ray and radiation sources,” Rev. Sci. Instrum. 79, 103302 (2008).
http://dx.doi.org/10.1063/1.3000003
31.
31. F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, and M. E. Glinsky, “ A study of picosecond laser–solid interactions up to 1019 W cm−2,” Phys. Plasmas 4, 447 (1997).
http://dx.doi.org/10.1063/1.872103
32.
32. J. Yu, Z. Jiang, J. C. Kieffer, and A. Krol, “ Hard x-ray emission in high intensity femtosecond laser–target interaction,” Phys. Plasmas 6, 1318 (1999).
http://dx.doi.org/10.1063/1.873372
33.
33. C. Reich, P. Gibbon, I. Uschmann, and E. Forster, “ Yield optimization and time structure of femtosecond laser plasma k-alpha sources,” Phys. Rev. Lett. 84, 4846 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4846
34.
34. J. C. Kieffer, A. Krol, Z. Jiang, C. C. Chamberlain, E. Scalzetti, and Z. Ichalalene, “ Future of laser-based X-ray sources for medical imaging,” Appl. Phys. B 74, s75 (2002).
http://dx.doi.org/10.1007/s00340-002-0870-3
35.
35. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, “ Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
36.
36. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. A. P. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. Mclaren, P. M. Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M. G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tomé, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J. P. Wellisch, D. C. Williams, D. Wright, and H. Yoshida, “ Geant4 developments and applications,” IEEE Trans. Electron Devices 53, 270 (2006).
http://dx.doi.org/10.1109/TNS.2006.869826
37.
37. F. Sohbatzadeh, S. Mirzanejhad, and M. Ghasemi, “ Electron acceleration by a chirped Gaussian laser pulse in vacuum,” Phys. Plasmas 13, 123108 (2006).
http://dx.doi.org/10.1063/1.2405345
38.
38. A. Khachatryan, F. van Goor, and K.-J. Boller, “ Interaction of free charged particles with a chirped electromagnetic pulse,” Phys. Rev. E 70, 067601 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.067601
39.
39. M. Silies, S. Linden, H. Witte, and H. Zacharias, “ The dependence of the Fe K α yield on the chirp of the femtosecond exciting laser pulse,” Appl. Phys. B 87, 623 (2007).
http://dx.doi.org/10.1007/s00340-007-2665-z
40.
40. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. ( Cambridge University Press, 2007).
41.
41. J. Chen, H. Zhang, I. V. Tomov, M. Wolfsberg, X. Ding, and P. M. Rentzepis, “ Transient structures and kinetics of the ferrioxalate redox reaction studied by time-resolved EXAFS, optical spectroscopy, and DFT,” J. Phys. Chem. A 111, 9326 (2007).
http://dx.doi.org/10.1021/jp0733466
42.
42. I. P. Pozdnyakov, O. V. Kel, V. F. Plyusnin, V. P. Grivin, and N. M. Bazhin, “ New insight into photochemistry of ferrioxalate,” J. Phys. Chem. A 112, 8316 (2008).
http://dx.doi.org/10.1021/jp8040583
43.
43. Y. Obara, T. Katayama, Y. Ogi, T. Suzuki, N. Kurahashi, S. Karashima, Y. Chiba, Y. Isokawa, T. Togashi, Y. Inubushi, M. Yabashi, T. Suzuki, and K. Misawa, “ Femtosecond time-resolved X-ray absorption spectroscopy of liquid using a hard X-ray free electron laser in a dual-beam dispersive detection method,” Opt. Express 22, 1105 (2014).
http://dx.doi.org/10.1364/OE.22.001105
44.
44. C. J. Miles and P. L. Brezonik, “ Oxygen consumption in humic-colored waters by a photochemical ferrous-ferric catalytic cycle,” Environ. Sci. Technol. 15, 1089 (1981).
http://dx.doi.org/10.1021/es00091a010
45.
45. J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “ High-brightness table-top hard x-ray source driven by source driven by sub-100-femtosecond mid-infrared pulses,” Nature Photonics 8, 927 (2014).
http://dx.doi.org/10.1038/nphoton.2014.256
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/2/10.1063/1.4913585
Loading
/content/aca/journal/sdy/2/2/10.1063/1.4913585
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/2/10.1063/1.4913585
2015-03-02
2016-10-01

Abstract

We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 m FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/2/1.4913585.html;jsessionid=R15KfsF1J3W1fwgvLMnucvEQ.x-aip-live-06?itemId=/content/aca/journal/sdy/2/2/10.1063/1.4913585&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/2/10.1063/1.4913585&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/2/10.1063/1.4913585'
Right1,Right2,Right3,