Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/2/10.1063/1.4914891
1.
1. E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, “ Ultrafast spin dynamics in ferromagnetic nickel,” Phys. Rev. Lett. 76, 42504253 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4250
2.
2. C. Boeglin, E. Beaurepaire, V. Halte, V. Lopez-Flores, C. Stamm, N. Pontius, H. A. Durr, and J.-Y. Bigot, “ Distinguishing the ultrafast dynamics of spin and orbital moments in solids,” Nature 465, 458461 (2010).
http://dx.doi.org/10.1038/nature09070
3.
3. B. Y. Mueller, T. Roth, M. Cinchetti, M. Aeschlimann, and B. Rethfeld, “ Driving force of ultrafast magnetization dynamics,” New J. Phys. 13, 123010 (2011).
http://dx.doi.org/10.1088/1367-2630/13/12/123010
4.
4. A. Fognini, T. U. Michlmayr, G. Salvatella, C. Wetli, U. Ramsperger, T. Bähler, F. Sorgenfrei, M. Beye, A. Eschenlohr, N. Pontius, C. Stamm, F. Hieke, M. Dell'Angela, S. d. Jong, R. Kukreja, N. Gerasimova, V. Rybnikov, A. Al-Shemmary, H. Redlin, J. Raabe, A. Föhlisch, H. A. Dürr, W. Wurth, D. Pescia, A. Vaterlaus, and Y. Acremann, “ Ultrafast reduction of the total magnetization in iron,” Appl. Phys. Lett. 104, 032402 (2014).
http://dx.doi.org/10.1063/1.4862476
5.
5. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “ Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4, 484488 (2010).
http://dx.doi.org/10.1038/nphoton.2010.90
6.
6. M. Battiato, K. Carva, and P. M. Oppeneer, “ Superdiffusive spin transport as a mechanism of ultrafast demagnetization,” Phys. Rev. Lett. 105, 027203 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.027203
7.
7. A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel, K. Holldack, R. Mitzner, A. Föhlisch, P. M. Oppeneer, and C. Stamm, “ Ultrafast spin transport as key to femtosecond demagnetization,” Nat. Mater. 12, 332 (2013).
http://dx.doi.org/10.1038/nmat3546
8.
8. B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M. Fähnle, T. Roth, M. Cinchetti, and M. Aeschlimann, “ Explaining the paradoxical diversity of ultrafast laser-induced demagnetization,” Nat. Mater. 9, 259265 (2010).
http://dx.doi.org/10.1038/nmat2593
9.
9. G.-M. Choi, B.-C. Min, K.-J. Lee, and D. G. Cahill, “ Spin current generated by thermally driven ultrafast demagnetization,” Nat. Commun. 5, 4334 (2014).
http://dx.doi.org/10.1038/ncomms5334
10.
10. A. J. Schellekens, K. C. Kuiper, R. R. J. C. de Wit, and B. Koopmans, “ Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation,” Nat. Commun. 5, 4333 (2014).
http://dx.doi.org/10.1038/ncomms5333
11.
11. R. J. Elliott, “ Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors,” Phys. Rev. 96, 266279 (1954).
http://dx.doi.org/10.1103/PhysRev.96.266
12.
12. D. Steiauf and M. Fähnle, “ Elliott-Yafet mechanism and the discussion of femtosecond magnetization dynamics,” Phys. Rev. B 79, 140401 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.140401
13.
13. D. Rudolf, C. La-O-Vorakiat, M. Battiato, R. Adam, J. M. Shaw, E. Turgut, P. Maldonado, S. Mathias, P. Grychtol, H. T. Nembach, T. J. Silva, M. Aeschlimann, H. C. Kapteyn, M. M. Murnane, C. M. Schneider, and P. M. Oppeneer, “ Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current,” Nat. Commun. 3, 1037 (2012).
http://dx.doi.org/10.1038/ncomms2029
14.
14. A. Melnikov, I. Razdolski, T. O. Wehling, E. T. Papaioannou, V. Roddatis, P. Fumagalli, O. Aktsipetrov, A. I. Lichtenstein, and U. Bovensiepen, “ Ultrafast transport of laser-excited spin-polarized carriers in Au/Fe/MgO(001),” Phys. Rev. Lett. 107, 076601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.076601
15.
15. T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsk, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “ Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256260 (2013).
http://dx.doi.org/10.1038/nnano.2013.43
16.
16. B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, “ Ultrafast magneto-optics in nickel: Magnetism or optics?,” Phys. Rev. Lett. 85, 844847 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.844
17.
17. P. M. Oppeneer and A. Liebsch, “ Ultrafast demagnetization in Ni: theory of magneto-optics for non-equilibrium electron distributions,” J. Phys.: Condens. Matter 16, 5519 (2004).
http://dx.doi.org/10.1088/0953-8984/16/30/013
18.
18. E. Carpene, F. Boschini, H. Hedayat, C. Piovera, C. Dallera, E. Puppin, M. Mansurova, M. Münzenberg, X. Zhang, and A. Gupta, “ Measurement of the magneto-optical response of Fe and CrO2 epitaxial films by pump-probe spectroscopy: Evidence for spin-charge separation,” Phys. Rev. B 87, 174437 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.174437
19.
19. J. Crangle and G. Goodman, “ The magnetization of pure iron and nickel,” Proc. R. Soc. London, Ser. A 321, 477 (1971).
http://dx.doi.org/10.1098/rspa.1971.0044
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/2/10.1063/1.4914891
Loading
/content/aca/journal/sdy/2/2/10.1063/1.4914891
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/2/10.1063/1.4914891
2015-03-18
2016-12-04

Abstract

The laser-induced demagnetization of a ferromagnet is caused by the temperature of the electron gas as well as the lattice temperature. For long excitation pulses, the two reservoirs are in thermal equilibrium. In contrast to a picosecond laser pulse, a femtosecond pulse causes a non-equilibrium between the electron gas and the lattice. By pump pulse length dependent optical measurements, we find that the magnetodynamics in Ni caused by a picosecond laser pulse can be reconstructed from the response to a femtosecond pulse. The mechanism responsible for demagnetization on the picosecond time scale is therefore contained in the femtosecond demagnetization experiment.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/2/1.4914891.html;jsessionid=NmpRbsztTe3xk6U9xMx0_rGG.x-aip-live-03?itemId=/content/aca/journal/sdy/2/2/10.1063/1.4914891&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/2/10.1063/1.4914891&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/2/10.1063/1.4914891'
Right1,Right2,Right3,