Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/2/10.1063/1.4916897
1.
1. P. E. Batson, “ Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity,” Nature 366, 727728 (1993).
http://dx.doi.org/10.1038/366727a0
2.
2. C. Colliex, “ Microscopy: Elementary resolution,” Nature 450, 622623 (2007).
http://dx.doi.org/10.1038/450622a
3.
3. D. A. Muller et al., “ Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy,” Science 319, 10731076 (2008).
http://dx.doi.org/10.1126/science.1148820
4.
4. C. Colliex, “ From electron energy-loss spectroscopy to multi-dimensional and multi-signal electron microscopy,” J Electron Microsc. (Tokyo) 60(suppl 1), S161S171 (2011).
http://dx.doi.org/10.1093/jmicro/dfr028
5.
5. R. F. Egerton, “ Electron energy-loss spectroscopy in the TEM,” Rep. Prog. Phys. 72, 016502 (2009).
http://dx.doi.org/10.1088/0034-4885/72/1/016502
6.
6. J. Nelayah et al., “ Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348353 (2007).
http://dx.doi.org/10.1038/nphys575
7.
7. E. Najafi, A. P. Hitchcock, D. Rossouw, and G. A. Botton, “ Mapping defects in a carbon nanotube by momentum transfer dependent electron energy loss spectromicroscopy,” Ultramicroscopy 113, 158164 (2012).
http://dx.doi.org/10.1016/j.ultramic.2011.11.017
8.
8. D. Rossouw, G. A. Botton, E. Najafi, V. Lee, and A. P. Hitchcock, “ Metallic and semiconducting single-walled carbon nanotubes: Differentiating individual SWCNTs by their carbon 1s spectra,” ACS Nano 6(12), 1096510972 (2012).
http://dx.doi.org/10.1021/nn3045227
9.
9. D. Rossouw, M. Bugnet, and G. A. Botton, “ Structural and electronic distortions in individual carbon nanotubes under laser irradiation in the electron microscope,” Phys. Rev. B 87, 125403 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.125403
10.
10. N. D. Browning, M. F. Chisholm, and S. J. Pennycook, “ Atomic-resolution chemical analysis using a scanning transmission electron microscope,” Nature 366, 143 (1993).
http://dx.doi.org/10.1038/366143a0
11.
11. D. A. Muller, Y. Tzou, R. Raj, and J. Silcox, “ Mapping sp2 and sp3 states of carbon at sub-nanometre spatial resolution,” Nature 366, 725727 (1993).
http://dx.doi.org/10.1038/366725a0
12.
12. B. Jouffrey, P. Schattschneider, and C. Hebert, “ The magic angle: A solved mystery,” Ultramicroscopy 102, 6166 (2004).
http://dx.doi.org/10.1016/j.ultramic.2004.08.006
13.
13. P. Schattschneider, C. Hebert, H. Franco, and B. Jouffrey, “ Anisotropic relativistic cross sections for inelastic electron scattering, and the magic angle,” Phys. Rev. B 72, 045142 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.045142
14.
14. C. J. Milne, T. J. Penfold, and M. Chergui, Coord. Chem. Rev. 277–278, 4468 (2014).
http://dx.doi.org/10.1016/j.ccr.2014.02.013
15.
15. C. Bressler and M. Chergui, “ Molecular structural dynamics probed by ultrafast X-ray absorption spectroscopy,” Annu. Rev. Phys. Chem. 61, 263282 (2010).
http://dx.doi.org/10.1146/annurev.physchem.012809.103353
16.
16. L. X. Chen, X. Zhang, and M. L. Shelby, “ Recent advances on ultrafast X-ray spectroscopy in the chemical sciences,” Chem. Sci. 5, 41364152 (2014).
http://dx.doi.org/10.1039/C4SC01333F
17.
17. H. T. Lemke et al., “ Femtosecond X-ray absorption spectroscopy at a hard X-ray free electron laser: Application to spin crossover dynamics,” J. Phys. Chem. A 117, 735740 (2013).
http://dx.doi.org/10.1021/jp312559h
18.
18. A. H. Zewail, “ Four-dimensional electron microscopy,” Science 328, 187193 (2010).
http://dx.doi.org/10.1126/science.1166135
19.
19. D. J. Flannigan and A. H. Zewail, “ 4D electron microscopy: Principles and applications,” Acc. Chem. Res. 45, 18281839 (2012).
http://dx.doi.org/10.1021/ar3001684
20.
20. R. M. van der Veen, O.-H. Kwon, A. Tissot, A. Hauser, and A. H. Zewail, “ Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy,” Nat. Chem. 5, 395402 (2013).
http://dx.doi.org/10.1038/nchem.1622
21.
21. L. Johnson and G. Dresselhaus, “ Optical properties of graphite,” Phys. Rev. B 7, 22752285 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.2275
22.
22. R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope ( Springer, 2011).
23.
23. L. Piazza et al., “ Ultrafast structural and electronic dynamics of the metallic phase in a layered manganite,” Struct. Dyn. 1, 014501 (2014).
http://dx.doi.org/10.1063/1.4835116
24.
24. F. Carbone, O.-H. Kwon, and A. H. Zewail, “ Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy,” Science 325, 181184 (2009).
http://dx.doi.org/10.1126/science.1175005
25.
25. D. D. L. Chung, “ Review graphite,” J. Mater. Sci. 37, 14751489 (2002).
http://dx.doi.org/10.1023/A:1014915307738
26.
26. Y. C. Wang, K. Scheerschmidt, and U. Gosele, “ Theoretical investigations of bond properties in graphite and graphitic silicon,” Phys. Rev. B 61, 1286412870 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.12864
27.
27. B. M. Kincaid, A. E. Meixner, and P. M. Platzman, “ Carbon K edge in graphite measured using electron-energy-loss spectroscopy,” Phys. Rev. Lett. 40, 12961299 (1978).
http://dx.doi.org/10.1103/PhysRevLett.40.1296
28.
28. R. D. Leapman and J. Silcox, “ Orientation dependence of core edges in electron-energy-loss spectra from anisotropic materials,” Phys. Rev. Lett. 42, 1361 (1979).
http://dx.doi.org/10.1103/PhysRevLett.42.1361
29.
29. R. F. Egerton and M. J. Whelan, “ Electron energy loss spectra of diamond, graphite and amorphous carbon,” J. Electron Spectrosc. Relat. Phenom. 3, 232236 (1974).
http://dx.doi.org/10.1016/0368-2048(74)80015-0
30.
30. M. M. Disko, O. L. Krivanek, and P. Rez, “ Orientation-dependent extended fine structure in electron-energy-loss spectra,” Phys. Rev. B 25, 4252 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.4252
31.
31.See supplementary material at http://dx.doi.org/10.1063/1.4916897 for a description of the heat diffusion simulations (S1), the core-level spectroscopy simulations (S2), the MD simulations (S3), a comparison between the real and shift-induced transient spectra (Fig. S1), the nanosecond-resolved low-loss EELS data (Fig. S2), the simulated changes in the unit cell dimensions (Fig. S3), and the simulated EELS spectra for simple a, b- and c-axes distortions (Fig. S4).[Supplementary Material]
32.
32. R. F. Egerton and S. C. Cheng, “ Measurement of local thickness by electron energy-loss spectroscopy,” Ultramicroscopy 21, 231244 (1987).
http://dx.doi.org/10.1016/0304-3991(87)90148-3
33.
33. W. C. Morgan, “ Thermal expansion coefficients of graphite crystals,” Carbon 10, 7379 (1972).
http://dx.doi.org/10.1016/0008-6223(72)90011-5
34.
34. R. W. G. Wyckoff, Cryst. Struct. 1, 783 (1963).
35.
35. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, and K. Jorissen, “ Parameter-free calculations of X-ray spectra with FEFF9,” Phys. Chem. Chem. Phys. 12, 55035513 (2010).
http://dx.doi.org/10.1039/b926434e
36.
36. K. Jorissen and J. J. Rehr, “ Calculations of electron energy loss and x-ray absorption spectra in periodic systems without a supercell,” Phys. Rev. B 81, 245124 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.245124
37.
37. K. Jorissen, J. J. Rehr, and J. Verbeeck, “ Multiple scattering calculations of relativistic electron energy loss spectra,” Phys. Rev. B 81, 155108 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155108
38.
38. J. Titantah and D. Lamoen, “ Energy-loss near-edge structure changes with bond length in carbon systems,” Phys. Rev. B 72, 193104 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.193104
39.
39. F. Vila, J. Rehr, H. Rossner, and H. Krappe, “ Theoretical x-ray absorption Debye-Waller factors,” Phys. Rev. B 76, 014301 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.014301
40.
40. E. Sevillano, H. Meuth, and J. Rehr, “ Extended X-ray absorption fine structure Debye-Waller factors. I. Monatomic crystals,” Phys. Rev. B 20, 49084911 (1979).
http://dx.doi.org/10.1103/PhysRevB.20.4908
41.
41. F. D. Vila, V. E. Lindahl, and J. J. Rehr, “ X-ray absorption Debye-Waller factors from ab initio molecular dynamics,” Phys. Rev. B 85, 024303 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.024303
42.
42. V.-T. Pham et al., “ Probing the transition from hydrophilic to hydrophobic solvation with atomic scale resolution,” J. Am. Chem. Soc. 133, 1274012748 (2011).
http://dx.doi.org/10.1021/ja203882y
43.
43. P. D'Angelo et al., “ Dynamic investigation of protein metal active sites: Interplay of XANES and molecular dynamics simulations,” J. Am. Chem. Soc. 132, 1490114909 (2010).
http://dx.doi.org/10.1021/ja1056533
44.
44. F. Vila, J. J. Rehr, J. Kas, R. G. Nuzzo, and A. I. Frenkel, “ Dynamic structure in supported Pt nanoclusters: Real-time density functional theory and X-ray spectroscopy simulations,” Phys. Rev. B 78, 121404(R) (2008).
http://dx.doi.org/10.1103/PhysRevB.78.121404
45.
45. P. Castrucci et al., “ Comparison of the local order in highly oriented pyrolitic graphite and bundles of single-wall carbon nanotubes by nanoscale extended energy loss spectra,” J. Phys. Chem. C 113, 48484855 (2009).
http://dx.doi.org/10.1021/jp810936c
46.
46. P. Schelling and P. Keblinski, “ Thermal expansion of carbon structures,” Phys. Rev. B 68, 035425 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.035425
47.
47. R. P. Chatelain, V. R. Morrison, B. L. M. Klarenaar, and B. J. Siwick, “ Coherent and incoherent electron-phonon coupling in graphite observed with radio-frequency compressed ultrafast electron diffraction,” Phys. Rev. Lett. 113, 235502 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.235502
48.
48. M. Harb et al., “ Picosecond dynamics of laser-induced strain in graphite,” Phys. Rev. B 84, 045435 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.045435
49.
49. S. L. Johnson et al., “ Directly observing squeezed phonon states with femtosecond X-ray diffraction,” Phys. Rev. Lett. 102, 175503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.175503
50.
50. B. Barwick, D. J. Flannigan, and A. H. Zewail, “ Photon-induced near-field electron microscopy,” Nature 462, 902906 (2009).
http://dx.doi.org/10.1038/nature08662
51.
51. A. Yurtsever, R. M. van der Veen, and A. H. Zewail, “ Subparticle ultrafast spectrum imaging in 4D electron microscopy,” Science 335, 5964 (2012).
http://dx.doi.org/10.1126/science.1213504
52.
52. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, “ Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95, 187403 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.187403
53.
53. M. Breusing, C. Ropers, and T. Elsaesser, “ Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102, 086809 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.086809
54.
54. Y. Ishida et al., “ Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite,” Sci. Rep. 1, 64 (2011).
http://dx.doi.org/10.1038/srep00064
55.
55. F. Carbone et al., “ Femtosecond carrier dynamics in bulk graphite and graphene paper,” Chem. Phys. Lett. 504, 3740 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.01.052
56.
56. S. Pagliara et al., “ Photoinduced π-π* band gap renormalization in graphite,” J. Am. Chem. Soc. 133, 63186322 (2011).
http://dx.doi.org/10.1021/ja1110738
57.
57. S. Schäfer, W. Liang, and A. H. Zewail, “ Primary structural dynamics in graphite,” New J. Phys. 13, 063030 (2011).
http://dx.doi.org/10.1088/1367-2630/13/6/063030
58.
58. H. Fan, “ Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82, 900905 (1951).
http://dx.doi.org/10.1103/PhysRev.82.900
59.
59. Y. P. Varshni, “ Temperature dependence of the energy gap in semiconductors,” Physica 34, 149154 (1967).
http://dx.doi.org/10.1016/0031-8914(67)90062-6
60.
60. S. Biernacki, U. Scherz, and B. Meyer, “ Temperature dependence of optical transitions between electronic energy levels in semiconductors,” Phys. Rev. B 49, 45014510 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.4501
61.
61. K. Seibert et al., “ Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42, 28422851 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.2842
62.
62. D. Olguın, M. Cardona, and A. Cantarero, “ Electron–phonon effects on the direct band gap in semiconductors: LCAO calculations,” Solid State Commun. 122, 575589 (2002).
http://dx.doi.org/10.1016/S0038-1098(02)00225-9
63.
63. F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, “ Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100, 035501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.035501
64.
64. A. H. Zewail and J. M. Thomas, 4D Electron Microscopy: Imaging in Space and Time ( World Scientific Publishing, 2010).
65.
65.Gatan Imaging Filter User Manual, 1996.
66.
66. A. H. Zewail and J. S. Baskin, “ Control imaging methods in advanced ultrafast electron microscopy,” U.S. patent 0,131,574 A1 (2014).
67.
67. S. Schäfer, W. Liang, and A. H. Zewail, “ Structural dynamics and transient electric-field effects in ultrafast electron diffraction from surfaces,” Chem. Phys. Lett. 493, 1118 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.04.049
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/2/10.1063/1.4916897
Loading
/content/aca/journal/sdy/2/2/10.1063/1.4916897
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/2/10.1063/1.4916897
2015-04-28
2016-12-09

Abstract

We demonstrate ultrafast core-electron energy-loss spectroscopy in four-dimensional electron microscopy as an element-specific probe of nanoscale dynamics. We apply it to the study of photoexcited graphite with femtosecond and nanosecond resolutions. The transient core-loss spectra, in combination with molecular dynamics simulations, reveal the elongation of the carbon-carbon bonds, even though the overall behavior is a contraction of the crystal lattice. A prompt energy-gap shrinkage is observed on the picosecond time scale, which is caused by local bond length elongation and the direct renormalization of band energies due to temperature-dependent electron–phonon interactions.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/2/1.4916897.html;jsessionid=HdsXHAhLSFGtp5Euyyh8Tshc.x-aip-live-03?itemId=/content/aca/journal/sdy/2/2/10.1063/1.4916897&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/2/10.1063/1.4916897&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/2/10.1063/1.4916897'
Right1,Right2,Right3,