Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Moffat, “ Time-resolved macromolecular crystallography,” Annu. Rev. Biophys. Biophys. Chem. 18, 309 (1989).
2. M. Schmidt, “ Structure based enzyme kinetics by time-resolved x-ray crystallography,” Ultrashort Laser Pulses in Medicine and Biology, edited by W. Zinth, M. Braun, and P. Gilch ( Springer, Berlin, New York, Germany, 2008).
3. W. A. Barletta, J. Bisognano, J. N. Corlett, P. Emma, Z. Huang, K. J. Kim, R. Lindberg, J. B. Murphy, G. R. Neil, D. C. Nguyen, C. Pelligrini, R. A. Rimmer, F. Sannibale, G. Stupakov, R. P. Walker, and A. A. Zholents, “ Free electron lasers: Present status and future challenges,” Nucl. Instrum. Methods Phys. Res., Sect. A 618, 69 (2010).
4. P. Emma et al., “ First lasing and operation of an angstrom-wavelength free-electron laser,” Nat. Photonics 4, 641647 (2010).
5. K. Tanaka and T. Shintake, “ SCSS x-fel conceptual design report,” RIKEN Harima Institute, Hyogo, Japan, 2005.
6. J. C. H. Spence, U. Weierstall, and H. N. Chapman, “ X-ray lasers for structural and dynamic biology,” Rep. Prog. Phys. 75, 102601 (2012).
7. R. Neutze and K. Moffat, “ Time-resolved structural studies at synchrotrons and x-ray free electron lasers: Opportunities and challenges,” Curr. Opin. Struct. Biol. 22, 651659 (2012).
8. H. N. Chapman et al., “ Femtosecond x-ray protein nano crystallography,” Nature 470, 7381 (2011).
9. J. Tenboer et al., “ Time-resolved serial crystallography captures big-resolution intermediates of photoactive yellow protein,” Science 346, 12421246 (2014).
10. A. McPherson, Crystallization of Biological Macromolecules ( Cold Spring Harbor Laboratory Press, NY, 1999).
11. M. Schmidt, V. Srajer, R. Hening, H. Ihee, N. Purwar, J. Tenboer, and S. Tripathi, “ Protein energy landscapes determined by five-dimensional crystallography,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 69, 2534 (2013).
12. O. F. Lange, “ Determination of solution structures of proteins up to 40 kda using cs-rosetta with sparse nmr data from depurated samples,” Proc. Natl. Acad. Sci. U. S. A. 109, 1087310878 (2012).
13. C. M. T. Spahn and P. A. Penczek, “ Exploring conformational modes of macromolecular assemblies by multi particle cryo-em,” Curr. Opin. Struct. Biol. 19, 623631 (2009).
14. R. M. Glaser and R. J. Hall, “ Reaching the information limit in cryo-em of biological macromolecule: Experimental aspects,” Biophys. J. 100, 23312337 (2011).
15. Z. Kam, “ Determination of macromolecular structure in solution by spatial correlation of scattering fluctuations,” Macromolecules 10, 927934 (1977).
16. D. Svergun and H. B. Stuhrmann, “ New developments in direct shape determination from small-angle scattering 1. Theory and model calculations,” Acta Crystallogr., Sect. A: Found. Crystallogr. 47, 736744 (1991).
17. D. K. Saldin, V. L. Shneerson, R. Fung, and A. Ourmazd, “ Structure of isolated biomolecules obtained from ultrashort x-ray pulses: Exploiting the symmetry of random orientations,” J. Phys.: Condens. Matter 21, 134014 (2009).
18. H. C. Poon, P. Schwander, M. Uddin, and D. K. Saldin, “ Fiber diffraction without fibers,” Phys. Rev. Lett. 110, 265505 (2013).
19. H. Liu, B. K. Poon, A. J. E. M. Janssen, and P. H. Zwart, “ Computation of fluctuation scattering profiles via three-dimensional zernike polynomials,” Acta Crystallogr., Sect. A: Found. Crystallogr. 68, 561567 (2012).
20. H. Liu, B. K. Poon, D. K. Saldin, J. C. H. Spence, and P. H. Zwart, “ Three-dimensional single-particle imaging using angular correlations from x-ray laser data,” Acta Crystallogr., Sect. A: Found. Crystallogr. 69, 365373 (2013).
21. K. Pande, P. Schwander, M. Schmidt, and D. K. Saldin, “ Deducing fast electron density changes in randomly oriented uncrystallized biomolecules in a pump-probe experiment,” Philos. Trans. R. Soc., B 369, 20130332 (2014).
22. S. Krinsky and R. Gluckstern, “ Analysis of statistical correlations and intensity spiking in the self-amplified spontaneous-emission free-electron laser,” Phys. Rev. Spec. Top.--Accel. Beams 6, 050701 (2003).
23. R. A. Kirian, K. E. Schmidt, X. Wang, R. B. Doak, and J. C. H. Spence, “ Signal, noise, and resolution in correlated fluctuations from snapshot small angle x-ray scattering,” Phys. Rev. E 84, 011921 (2011).
24. L. Lovisolo and E. A. B. da Silva, “ Uniform distribution of points on a hyper-sphere with applications to vector bit-plane encoding,” IEE Proc. Vis. Image Signal Process. 148, 187193 (2001).
25. P. C. Hansen, “ The truncated svd as a method for regularization,” BIT Numer. Math. 27, 534553 (1987).
26. K. Pearson, “ Notes on regression and inheritance in the case of two parents,” Proc. R. Soc. London 58, 240242 (1895).
27. G. Geloni, E. Saldin, L. Samoylova, E. Schneidmiller, H. Sinn, Th. Tschentscher, and M. Yurkov, “ Coherent properties of the European XFEL,” New J. Phys. 12, 035021 (2010).
28. M. Born and E. Wolf, Principles of Optics ( Pergamon Press, Oxford, 1980).
29. M. M. Siebert et al., “ Single mimivirus particles intercepted and imaged with an x-ray laser,” Nature 470, 7882 (2011).
30. P. H. Zwart, private communication (2015).
31. R. Fung, V. Shneerson, D. K. Saldin, and A. Ourmazd, “ Structure from fleeting illumination of faint spinning objects in flight,” Nat. Phys. 5, 6467 (2009).
32. D. Arnlund et al., “ Visualizing a protein quake with time-resolved x-ray scattering at a free electron laser,” Nat. Methods 11, 923 (2014).

Data & Media loading...


Article metrics loading...



Determination of fast structural changes of biomolecules is usually performed on crystalline samples in a time-resolved pump-probe experiment. Changes in the structure are found by the difference Fourier method using phases of a known reference structure. As we showed recently, such changes can also be determined from diffraction of uncrystallized molecules in random orientations. In this case, the difference in the angular correlations of the diffraction patterns is used to find structural changes. Similar to the difference Fourier method, there is no need for iterative phasing. We validated this approach previously with simulations in the absence of noise. In this paper, we show that the effects of noise can be adequately suppressed by averaging over a sufficiently large ensemble as they can be obtained using an X-ray free electron laser.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd