Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/2/10.1063/1.4918727
1.
1. T. J. Penfold, C. J. Milne, and M. Chergui, Advances in Chemical Physics, 2nd ed. edited by Stuart A. Rice and Aaron R. Dinner (John Wiley & Sons, Inc., 2013) Vol. 153.
2.
2. F. Carbone, B. Barwick, O. H. Kwon, H. S. Park, J. S. Baskin, and A. H. Zewail, “ EELS femtosecond resolved in 4D ultrafast electron microscopy,” Chem. Phys. Lett. 468(4), 107111 (2009).
http://dx.doi.org/10.1016/j.cplett.2008.12.027
3.
3. F. Carbone, O. H. Kwon, and A. H. Zewail, “ Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy,” Science 325(5937), 181184 (2009).
http://dx.doi.org/10.1126/science.1175005
4.
4. F. Carbone, “ Modern electron microscopy resolved in space, energy and time,” Eur. Phys. J. Appl. Phys. 54(03), 33503 (2011).
http://dx.doi.org/10.1051/epjap/2010100354
5.
5. F. Carbone, P. Musumeci, O. J. Luiten, and C. Hebert, “ A perspective on novel sources of ultrashort electron and x-ray pulses,” Chem. Phys. 392(1), 19 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.10.010
6.
6. J. Cho, T. Y. Hwang, and A. H. Zewail, “ Visualization of carrier dynamics in p (n)-type gaas by scanning ultrafast electron microscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(6), 20942099 (2014).
http://dx.doi.org/10.1073/pnas.1400138111
7.
7. A. Yurtsever, R. M. van der Veen, and A. H. Zewail, “ Subparticle ultrafast spectrum imaging in 4d electron microscopy,” Science 335(6064), 5964 (2012).
http://dx.doi.org/10.1126/science.1213504
8.
8. V. Ortalan and A. H. Zewail, “ 4D scanning transmission ultrafast electron microscopy: Single-particle imaging and spectroscopy,” J. Am. Chem. Soc. 133(28), 1073210735 (2011).
http://dx.doi.org/10.1021/ja203821y
9.
9. T. LaGrange, M. R. Armstrong, K. Boyden, C. G. Brown, G. H. Campbell, J. D. Colvin, W. J. DeHope, A. M. Frank, D. J. Gibson, F. V. Hartemann et al., “ Single-shot dynamic transmission electron microscopy,” Appl. Phys. Lett. 89(4), 044105 (2006).
http://dx.doi.org/10.1063/1.2236263
10.
10. D. Shorokhov and A. H. Zewail, “ 4D electron imaging: principles and perspectives,” Phys. Chem. Chem. Phys. 10(20), 28792893 (2008).
http://dx.doi.org/10.1039/b801626g
11.
11. A. H. Zewail and J. M. Thomas, 4D Electron Microscopy: Imaging in Space and Time ( World Scientific, 2009).
12.
12. L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, “ Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology,” Chem. Phys. 423, 7984 (2013).
http://dx.doi.org/10.1016/j.chemphys.2013.06.026
13.
13. R. M. van der Veen, T. J. Penfold, and A. H. Zewail, “ Ultrafast Core-Loss Spectroscopy in 4D Electron Microscopy,” Struct. Dyn. 2, 024302 (2015).
http://dx.doi.org/10.1063/1.4916897
14.
14. T. E. Stevens, J. Kuhl, and R. Merlin, “ Coherent phonon generation and the two stimulated Raman tensors,” Phys. Rev. B 65(14), 144304 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144304
15.
15. D. N. Basov, R. D. Averitt, D. Van Der Marel, M. Dressel, and K. Haule, “ Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83(2), 471 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.471
16.
16. G. Moos, C. Gahl, R. Fasel, M. Wolf, and T. Hertel, “ Anisotropy of quasiparticle lifetimes and the role of disorder in graphite from ultrafast time-resolved photoemission spectroscopy,” Phys. Rev. Lett. 87(26), 267402 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.267402
17.
17. M. Chergui and A. H. Zewail, “ Electron and x-ray methods of ultrafast structural dynamics: Advances and applications,” ChemPhysChem 10(1), 2843 (2009).
http://dx.doi.org/10.1002/cphc.200800667
18.
18. Ch. Bressler, C. Milne, V.-T. Pham, A. ElNahhas, R. M. Van der Veen, W. Gawelda, S. Johnson, P. Beaud, D. Grolimund, M. Kaiser et al.. “ Femtosecond Xanes study of the light-induced spin crossover dynamics in an iron (ii) complex,” Science 323(5913), 489492 (2009).
http://dx.doi.org/10.1126/science.1165733
19.
19. F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, “ Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100(3), 035501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.035501
20.
20. L. Piazza, C. Ma, H. X. Yang, A. Mann, Y. Zhu, J. Q. Li, and F. Carbone, “ Ultrafast structural and electronic dynamics of the metallic phase in a layered manganite,” Struct. Dyn. 1(1), 014501 (2014).
http://dx.doi.org/10.1063/1.4835116
21.
21. F. M. F. De Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, “ 2p x-ray absorption of 3d transition-metal compounds: An atomic multiplet description including the crystal field,” Phys. Rev. B 42(9), 5459 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.5459
22.
22. R. K. Li and P. Musumeci, “ Single-shot mev transmission electron microscopy with picosecond temporal resolution,” Phys. Rev. Appl. 2(2), 024003 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.2.024003
23.
23. H. S. Park, O. H. Kwon, J. S. Baskin, B. Barwick, and A. H. Zewail, “ Direct observation of martensitic phase-transformation dynamics in iron by 4D single-pulse electron microscopy,” Nano Lett. 9(11), 39543962 (2009).
http://dx.doi.org/10.1021/nl9032704
24.
24. M. S. Grinolds, V. A. Lobastov, J. Weissenrieder, and A. H. Zewail, “ Four-dimensional ultrafast electron microscopy of phase transitions,” Proc. Natl. Acad. Sci. U.S.A. 103(49), 1842718431 (2006).
http://dx.doi.org/10.1073/pnas.0609233103
25.
25. B. Barwick, D. J. Flannigan, and A. H. Zewail, “ Photon-induced near-field electron microscopy,” Nature 462(7275), 902906 (2009).
http://dx.doi.org/10.1038/nature08662
26.
26. D. J. Flannigan, B. Barwick, and A. H. Zewail, “ Biological imaging with 4D ultrafast electron microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 99339937 (2010).
http://dx.doi.org/10.1073/pnas.1005653107
27.
27. T. Mishina, K. Nitta, and Y. Masumoto, “ Coherent lattice vibration of interlayer shearing mode of graphite,” Phys. Rev. B 62(4), 2908 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.2908
28.
28. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, “ Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95(18), 187403 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.187403
29.
29. R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, and M. A. Pimenta, “ Probing phonon dispersion relations of graphite by double resonance Raman scattering,” Phys. Rev. Lett. 88(2), 027401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.88.027401
30.
30. M. Breusing, C. Ropers, and T. Elsaesser, “ Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.086809
31.
31. M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J. P. l. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, “ Ultrafast nonequilibrium carrier dynamics in a single graphene layer,” Phys. Rev. B 83(15), 153410 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.153410
32.
32. F. Carbone, G. Aubock, A. Cannizzo, F. Van Mourik, R. R. Nair, A. K. Geim, K. S. Novoselov, and M. Chergui, “ Femtosecond carrier dynamics in bulk graphite and graphene paper,” Chem. Phys. Lett. 504(1), 3740 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.01.052
33.
33. F. Carbone, “ The interplay between structure and orbitals in the chemical bonding of graphite,” Chem. Phys. Lett. 496(4), 291295 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.07.074
34.
34. S. Pagliara, G. Galimberti, S. Mor, M. Montagnese, G. Ferrini, M. S. Grandi, P. Galinetto, and F. Parmigiani, “ Photoinduced π- π* band gap renormalization in graphite,” J. Am. Chem. Soc. 133(16), 63186322 (2011).
http://dx.doi.org/10.1021/ja1110738
35.
35. X. Q. Yan, J. Yao, Z. B. Liu, X. Zhao, X. D. Chen, C. Gao, W. Xin, Y. Chen, and J. G. Tian, “ Evolution of anisotropic-to-isotropic photoexcited carrier distribution in graphene,” Phys. Rev. B 90(13), 134308 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.134308
36.
36. B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “ Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192195 (2011).
http://dx.doi.org/10.1126/science.1198804
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/2/10.1063/1.4918727
Loading
/content/aca/journal/sdy/2/2/10.1063/1.4918727
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/2/10.1063/1.4918727
2015-04-28
2016-09-29

Abstract

In van der Veen ., [Struct. Dyn. , 024302 (2015)], femtosecond and nanosecond electron energy loss spectroscopy of deep core-levels are demonstrated. These results pave the way to the investigation of materials and molecules with combined energy, time, and spatial resolution in a transmission electron microscope. Furthermore, the authors elucidate the role of the electron phonon coupling in the band-gap renormalization that takes place in graphite upon photo-excitation.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/2/1.4918727.html;jsessionid=_dzD3VEHqbiLTf1yWWYbYhI0.x-aip-live-03?itemId=/content/aca/journal/sdy/2/2/10.1063/1.4918727&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/2/10.1063/1.4918727&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/2/10.1063/1.4918727'
Right1,Right2,Right3,