Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. J. Penfold, C. J. Milne, and M. Chergui, Advances in Chemical Physics, 2nd ed. edited by Stuart A. Rice and Aaron R. Dinner (John Wiley & Sons, Inc., 2013) Vol. 153.
2. F. Carbone, B. Barwick, O. H. Kwon, H. S. Park, J. S. Baskin, and A. H. Zewail, “ EELS femtosecond resolved in 4D ultrafast electron microscopy,” Chem. Phys. Lett. 468(4), 107111 (2009).
3. F. Carbone, O. H. Kwon, and A. H. Zewail, “ Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy,” Science 325(5937), 181184 (2009).
4. F. Carbone, “ Modern electron microscopy resolved in space, energy and time,” Eur. Phys. J. Appl. Phys. 54(03), 33503 (2011).
5. F. Carbone, P. Musumeci, O. J. Luiten, and C. Hebert, “ A perspective on novel sources of ultrashort electron and x-ray pulses,” Chem. Phys. 392(1), 19 (2012).
6. J. Cho, T. Y. Hwang, and A. H. Zewail, “ Visualization of carrier dynamics in p (n)-type gaas by scanning ultrafast electron microscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(6), 20942099 (2014).
7. A. Yurtsever, R. M. van der Veen, and A. H. Zewail, “ Subparticle ultrafast spectrum imaging in 4d electron microscopy,” Science 335(6064), 5964 (2012).
8. V. Ortalan and A. H. Zewail, “ 4D scanning transmission ultrafast electron microscopy: Single-particle imaging and spectroscopy,” J. Am. Chem. Soc. 133(28), 1073210735 (2011).
9. T. LaGrange, M. R. Armstrong, K. Boyden, C. G. Brown, G. H. Campbell, J. D. Colvin, W. J. DeHope, A. M. Frank, D. J. Gibson, F. V. Hartemann et al., “ Single-shot dynamic transmission electron microscopy,” Appl. Phys. Lett. 89(4), 044105 (2006).
10. D. Shorokhov and A. H. Zewail, “ 4D electron imaging: principles and perspectives,” Phys. Chem. Chem. Phys. 10(20), 28792893 (2008).
11. A. H. Zewail and J. M. Thomas, 4D Electron Microscopy: Imaging in Space and Time ( World Scientific, 2009).
12. L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, “ Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology,” Chem. Phys. 423, 7984 (2013).
13. R. M. van der Veen, T. J. Penfold, and A. H. Zewail, “ Ultrafast Core-Loss Spectroscopy in 4D Electron Microscopy,” Struct. Dyn. 2, 024302 (2015).
14. T. E. Stevens, J. Kuhl, and R. Merlin, “ Coherent phonon generation and the two stimulated Raman tensors,” Phys. Rev. B 65(14), 144304 (2002).
15. D. N. Basov, R. D. Averitt, D. Van Der Marel, M. Dressel, and K. Haule, “ Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83(2), 471 (2011).
16. G. Moos, C. Gahl, R. Fasel, M. Wolf, and T. Hertel, “ Anisotropy of quasiparticle lifetimes and the role of disorder in graphite from ultrafast time-resolved photoemission spectroscopy,” Phys. Rev. Lett. 87(26), 267402 (2001).
17. M. Chergui and A. H. Zewail, “ Electron and x-ray methods of ultrafast structural dynamics: Advances and applications,” ChemPhysChem 10(1), 2843 (2009).
18. Ch. Bressler, C. Milne, V.-T. Pham, A. ElNahhas, R. M. Van der Veen, W. Gawelda, S. Johnson, P. Beaud, D. Grolimund, M. Kaiser et al.. “ Femtosecond Xanes study of the light-induced spin crossover dynamics in an iron (ii) complex,” Science 323(5913), 489492 (2009).
19. F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, “ Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100(3), 035501 (2008).
20. L. Piazza, C. Ma, H. X. Yang, A. Mann, Y. Zhu, J. Q. Li, and F. Carbone, “ Ultrafast structural and electronic dynamics of the metallic phase in a layered manganite,” Struct. Dyn. 1(1), 014501 (2014).
21. F. M. F. De Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, “ 2p x-ray absorption of 3d transition-metal compounds: An atomic multiplet description including the crystal field,” Phys. Rev. B 42(9), 5459 (1990).
22. R. K. Li and P. Musumeci, “ Single-shot mev transmission electron microscopy with picosecond temporal resolution,” Phys. Rev. Appl. 2(2), 024003 (2014).
23. H. S. Park, O. H. Kwon, J. S. Baskin, B. Barwick, and A. H. Zewail, “ Direct observation of martensitic phase-transformation dynamics in iron by 4D single-pulse electron microscopy,” Nano Lett. 9(11), 39543962 (2009).
24. M. S. Grinolds, V. A. Lobastov, J. Weissenrieder, and A. H. Zewail, “ Four-dimensional ultrafast electron microscopy of phase transitions,” Proc. Natl. Acad. Sci. U.S.A. 103(49), 1842718431 (2006).
25. B. Barwick, D. J. Flannigan, and A. H. Zewail, “ Photon-induced near-field electron microscopy,” Nature 462(7275), 902906 (2009).
26. D. J. Flannigan, B. Barwick, and A. H. Zewail, “ Biological imaging with 4D ultrafast electron microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 99339937 (2010).
27. T. Mishina, K. Nitta, and Y. Masumoto, “ Coherent lattice vibration of interlayer shearing mode of graphite,” Phys. Rev. B 62(4), 2908 (2000).
28. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, “ Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95(18), 187403 (2005).
29. R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, and M. A. Pimenta, “ Probing phonon dispersion relations of graphite by double resonance Raman scattering,” Phys. Rev. Lett. 88(2), 027401 (2001).
30. M. Breusing, C. Ropers, and T. Elsaesser, “ Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
31. M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J. P. l. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, “ Ultrafast nonequilibrium carrier dynamics in a single graphene layer,” Phys. Rev. B 83(15), 153410 (2011).
32. F. Carbone, G. Aubock, A. Cannizzo, F. Van Mourik, R. R. Nair, A. K. Geim, K. S. Novoselov, and M. Chergui, “ Femtosecond carrier dynamics in bulk graphite and graphene paper,” Chem. Phys. Lett. 504(1), 3740 (2011).
33. F. Carbone, “ The interplay between structure and orbitals in the chemical bonding of graphite,” Chem. Phys. Lett. 496(4), 291295 (2010).
34. S. Pagliara, G. Galimberti, S. Mor, M. Montagnese, G. Ferrini, M. S. Grandi, P. Galinetto, and F. Parmigiani, “ Photoinduced π- π* band gap renormalization in graphite,” J. Am. Chem. Soc. 133(16), 63186322 (2011).
35. X. Q. Yan, J. Yao, Z. B. Liu, X. Zhao, X. D. Chen, C. Gao, W. Xin, Y. Chen, and J. G. Tian, “ Evolution of anisotropic-to-isotropic photoexcited carrier distribution in graphene,” Phys. Rev. B 90(13), 134308 (2014).
36. B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “ Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192195 (2011).

Data & Media loading...


Article metrics loading...



In van der Veen ., [Struct. Dyn. , 024302 (2015)], femtosecond and nanosecond electron energy loss spectroscopy of deep core-levels are demonstrated. These results pave the way to the investigation of materials and molecules with combined energy, time, and spatial resolution in a transmission electron microscope. Furthermore, the authors elucidate the role of the electron phonon coupling in the band-gap renormalization that takes place in graphite upon photo-excitation.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd