Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/4/10.1063/1.4919398
1.
1. Barends, T. R. , Foucar, L. , Botha, S. , Doak, R. B. , Shoeman, R. L. et al., “ De novo protein crystal structure determination from X-ray free-electron laser data,” Nature 505(7482), 244247 (2014).
http://dx.doi.org/10.1038/nature12773
2.
2. Barty, A. , Caleman, C. , Aquila, A. , Timneanu, N. , Lomb, L. , White, T. A. et al., “ Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements,” Nat. Photonics 6(1), 3540 (2012).
http://dx.doi.org/10.1038/nphoton.2011.297
3.
3. Barty, A. , Kirian, R. A. , Maia, F. R. N. C. , Hantke, M. , Yoon, C. H. , White, T. A. , and Chapman, H. N. , “ Cheetah: Software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data,” J. Appl. Crystallogr. 47, 11181131 (2014).
http://dx.doi.org/10.1107/S1600576714007626
4.
4. Boutet, S. and Williams, G. J. , “ The coherent X-ray imaging (CXI) instrument at the Linac Coherent Light Source (LCLS),” New J. Phys. 12, 035024 (2010).
http://dx.doi.org/10.1088/1367-2630/12/3/035024
5.
5. Caleman, C. , Timneanu, N. , Martin, A. V. , Jönsson, H. O. , Aquila, A , Barty, A. , Scott, H. A. , White, T. A. , and Chapman, H. N. , “ Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser,” Opt. Express 23, 12131231 (2015).
http://dx.doi.org/10.1364/OE.23.001213
6.
6. DePonte, D. P. , Weierstall, U. , Schmidt, K. , Warner, J. , Starodub, D. , Spence, J. C. H. , and Doak, R. B. , “ Gas dynamic virtual nozzle for generation of microscopic droplet streams,” J. Phys. D: Appl. Phys. 41, 195505 (2008).
http://dx.doi.org/10.1088/0022-3727/41/19/195505
7.
7. Galli, L. , Son, S.-K. , White, T. A. , Santra, R. , Chapman, H. N. , and Nanao, M. H. , “ Towards RIP using free electron laser SFX data,” J. Synchrotron Rad. 22, 249255 (2015).
http://dx.doi.org/10.1107/S1600577514027854
8.
8. Galli, L. , Barends, T. , White, T. A. , Son, S.-K. , Barty, A. , Botha, S. , Boutet, S. , Doak, R. B. , Nanao, M. H. , Nass, K. , Schoeman, R. L. , Santra, R. , Schlichting, I. , and Chapman, H. N. , “ Towards phasing using high X-Ray intensity” (unpublished).
9.
9. Howell, P. and Smith, G. , “ Identification of heavy-atom derivatives by normal probability methods,” J. Appl. Crystallogr. 25, 8186 (1992).
http://dx.doi.org/10.1107/S0021889891010385
10.
10. Kirian, R. A. , Wang, X. , Weierstall, U. , Schmidt, K. E. , Spence, J. C. , Hunter, M. , and Holton, J. , “ Femtosecond protein nanocrystallography—Data analysis methods,” J. Opt. Express 18, 57135723 (2010).
http://dx.doi.org/10.1364/OE.18.005713
11.
11. McCoy, A. J. , Grosse-Kunstleve, R. W. , Adams, P. D. , Winn, M. D. , Storoni, L. C. , and Read, R. , “ Phaser crystallographic software,” J. Appl. Crystallogr. 40, 658674 (2007).
http://dx.doi.org/10.1107/S0021889807021206
12.
12. Murshudov, G. N. , Vagin, A. A. , and Dodson, E. J. , “ Refinement of macromolecular structures by the maximum-likelihood method,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 53, 240255 (1997).
http://dx.doi.org/10.1107/S0907444996012255
13.
13. Nass, K. et al., “ Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams,” J. Synchrotron Rad. 22, 225238 (2015).
http://dx.doi.org/10.1107/S1600577515002349
14.
14. Ravelli, R. B. et al., “ Specific radiation damage can be used to solve macromolecular crystal structures,” Structure 11, 21724 (2003).
http://dx.doi.org/10.1016/S0969-2126(03)00006-6
15.
15. Redecke, L. , Nass, K. , DePonte, D. P. , White, T. A. , Rehders, D. et al.. “ Natively inhibited Trypanosoma brucei Cathepsin B structure determined by using an X-ray laser,” Science 339, 227230 (2013).
http://dx.doi.org/10.1126/science.1229663
16.
16. Sauter, N. K. , “ XFEL diffraction: developing processing methods to optimize data quality,” J. Synchrotron Rad. 22, 239248 (2015).
http://dx.doi.org/10.1107/S1600577514028203
17.
17. Son, S.-K. , Chapman, H. N. , and Santra, R. , “ Multiwavelength anomalous diffraction at high x-ray intensity,” Phys. Rev. Lett. 107, 218102 (2011a).
http://dx.doi.org/10.1103/PhysRevLett.107.218102
18.
18. Son, S.-K. , Young, L. , and Santra, R. , “ Impact of hollow-atom formation on coherent x-ray scattering at high intensity,” Phys. Rev. A 83, 033402 (2011b).
http://dx.doi.org/10.1103/PhysRevA.83.033402
19.
19. Weierstall, U. , Spence, J. C. H. , and Doak, R. B. , “ Injector for scattering measurements on fully solvated biospecies,” Rev. Sci. Instrum. 83, 035108 (2012).
http://dx.doi.org/10.1063/1.3693040
20.
20. White, T. A. , Kirian, R. A. , Martin, A. V. , Aquila, A. , Nass, K. , Barty, A. , and Chapman, H. N. , “ CrystFEL: A software suite for snapshot serial crystallography,” J. Appl. Crystallogr. 45, 335341 (2012).
http://dx.doi.org/10.1107/S0021889812002312
21.
21. White, T. A. , Barty, A. , Stellato, F. , Holton, J. M. , Kirian, R. A. , Zatsepin, N. A. , and Chapman, H. N. , “ Crystallographic data processing for free-electron laser sources,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 69, 1231 (2013).
http://dx.doi.org/10.1107/S0907444913013620
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/4/10.1063/1.4919398
Loading
/content/aca/journal/sdy/2/4/10.1063/1.4919398
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/4/10.1063/1.4919398
2015-04-29
2016-12-07

Abstract

Current hard X-ray free-electron laser (XFEL) sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/4/1.4919398.html;jsessionid=qTCm9pFvjdmgMw_0Ss-RmkWV.x-aip-live-03?itemId=/content/aca/journal/sdy/2/4/10.1063/1.4919398&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/4/10.1063/1.4919398&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/4/10.1063/1.4919398'
Right1,Right2,Right3,