Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/4/10.1063/1.4919740
1.
1. Amunts, A. , Brown, A. , Bai, X.-C. , Llácer, J. L. , Hussain, T. , Emsley, P. , Long, F. , Murshudov, G. , Scheres, S. H. W. , and Ramakrishnan, V. , “ Structure of the yeast mitochondrial large ribosomal subunit,” Science 343(6178), 14851489 (2014).
http://dx.doi.org/10.1126/science.1249410
2.
2. Aquila, A. , Barty, A. , Bostedt, C. , Boutet, S. , Carini, G. , dePonte, D. , Drell, P. , Doniach, S. , Downing, K. H. , Earnest, T. , Elmlund, H. , Elser, V. , Gühr, M. , Hajdu, J. , Hastings, J. , Hau-Riege, S. P. , Huang, Z. , Lattman, E. E. , Maia, F. R. N. C. , Marchesini, S. , Ourmazd, A. , Pellegrini, C. , Santra, R. , Schlichting, I. , Schroer, C. , Spence, J. C. H. , Vartanyants, I. A. , Wakatsuki, S. , Weis, W. I. , and Williams, G. J. , “ The linac coherent light source single particle imaging road map,” Struct. Dyn. 2, 041701 (2015).
http://dx.doi.org/10.1063/1.4918726
3.
3. Dashti, A. , Schwander, P. , Langlois, R. , Fung, R. , Li, W. , Hosseinizadeh, A. , Liao, H. Y. , Pallesen, J. , Sharma, G. , Stupina, V. A. , Simon, A. E. , Dinman, J. D. , Frank, J. , and Ourmazd, A. , “ Trajectories of the ribosome as a brownian nanomachine,” Proc. Natl. Acad. Sci. U. S. A. 111(49), 1749217497 (2014).
http://dx.doi.org/10.1073/pnas.1419276111
4.
4. Ekeberg, T. et al., “ Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free electron laser,” Phys. Rev. Lett. 114, 098102 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.098102
5.
5. Fischer, N. , Konevega, A. L. , Wintermeyer, W. , Rodnina, M. V. , and Stark, H. , “ Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy,” Nature 466(7304), 329333 (2010).
http://dx.doi.org/10.1038/nature09206
6.
6. Frank, J. , Three-Dimensional Electron Microscopy of Macromolecular Assemblies ( Oxford University Press, New York, 2006).
7.
7. Fung, R. , Shneerson, V. , Saldin, D. K. , and Ourmazd, A. , “ Structure from fleeting illumination of faint spinning objects in flight,” Nat. Phys. 5(1), 6467 (2009).
http://dx.doi.org/10.1038/nphys1129
8.
8. Giannakis, D. , Schwander, P. , and Ourmazd, A. , “ The symmetries of image formation by scattering. I. Theoretical framework,” Opt. Express 20(12), 1279912826 (2012).
http://dx.doi.org/10.1364/OE.20.012799
9.
9. Hosseinizadeh, A. , Schwander, P. , Dashti, A. , Fung, R. , D'Souza, R. M. D. , and Ourmazd, A. , “ High-resolution structure of viruses from random diffraction snapshots,” Philos. Trans. R. Soc., B 369(1647), 20130326 (2014).
http://dx.doi.org/10.1098/rstb.2013.0326
10.
10. Kassemeyer, S. , Jafarpour, A. , Lomb, L. , Steinbrener, J. , Martin, A. V. , and Schlichting, I. , “ Optimal mapping of x-ray laser diffraction patterns into three dimensions using routing algorithms,” Phys. Rev. E 88(4), 042710 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.042710
11.
11. Kirian, R. A. , Schmidt, K. E. , Wang, X. , Doak, R. B. , and Spence, J. C. , “ Signal, noise, and resolution in correlated fluctuations from snapshot small-angle x-ray scattering,” Phys. Rev. E 84, 011921 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.011921
12.
12. Loh, N. T. and Elser, V. , “ Reconstruction algorithm for single-particle diffraction imaging experiments,” Phys. Rev. E 80(2 Pt 2), 026705 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.026705
13.
13. Moore, P. B. , “ How should we think about the ribosome?,” Annu. Rev. Biophys. 41, 119 (2012).
http://dx.doi.org/10.1146/annurev-biophys-050511-102314
14.
14. Moths, B. and Ourmazd, A. , “ Bayesian algorithms for recovering structure from single-particle diffraction snapshots of unknown orientation: A comparison,” Acta Crystallogr., Sect. A: Found. Crystallogr. 67, 481486 (2011).
http://dx.doi.org/10.1107/S0108767311019611
15.
15. Neutze, R. , Wouts, R. , van der Spoel, D. , Weckert, E. , and Hajdu, J. , “ Potential for biomolecular imaging with femtosecond X-ray pulses,” Nature 406(6797), 752757 (2000).
http://dx.doi.org/10.1038/35021099
16.
16. Philipp, H. T. , Ayyer, K. , Tate, M. W. , Elser, V. , and Gruner, S. M. , “ Solving structure with sparse, randomly oriented x-ray data,” Opt. Express 20(12), 1312913137 (2012).
http://dx.doi.org/10.1364/OE.20.013129
17.
17. Saldin, D. K. , Shneerson, V. L. , Fung, R. , and Ourmazd, A. , “ Structure of isolated biomolecules from ultrashort x-ray pulses: Exploiting the symmetry of random orientations,” J. Phys.: Condens. Matter 21(13), 134014 (2009).
http://dx.doi.org/10.1088/0953-8984/21/13/134014
18.
18. Scheres, S. H. , “ A Bayesian view on cryo-EM structure determination,” J. Mol. Biol. 415(2), 406418 (2012).
http://dx.doi.org/10.1016/j.jmb.2011.11.010
19.
19. Scheres, S. H. , Gao, H. , Valle, M. , Herman, G. T. , Eggermont, P. P. , Frank, J. , and Carazo, J. M. , “ Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization,” Nat. Methods 4(1), 2729 (2007).
http://dx.doi.org/10.1038/nmeth992
20.
20. Schwander, P. , Fung, R. , and Ourmazd, A. , “ Conformations of macromolecules and their complexes from heterogeneous datasets,” Philos. Trans. R. Soc., B 369, 20130567 (2014).
http://dx.doi.org/10.1098/rstb.2013.0567
21.
21. Schwander, P. , Giannakis, D. , Yoon, C. H. , and Ourmazd, A. , “ The symmetries of image formation by scattering. II. Applications,” Opt. Express 20(12), 1282712849 (2012).
http://dx.doi.org/10.1364/OE.20.012827
22.
22. Seibert, J. A. , Boon, J. M. , and Lindfors, K. K. , “ Flat-field correction technique for digital detectors,” Proc. SPIE 3336, 348354 (1998).
http://dx.doi.org/10.1117/12.317034
23.
23. Shneerson, V. L. , Ourmazd, A. , and Saldin, D. K. , “ Crystallography without crystals. I. The common-line method for assembling a three-dimensional diffraction volume from single-particle scattering,” Acta Crystallogr., Sect. A: Found. Crystallogr. 64(Pt 2), 303315 (2008).
http://dx.doi.org/10.1107/S0108767307067621
24.
24. Solem, J. C. and Baldwin, G. C. , “ Microholography of living organisms,” Science 218(4569), 229235 (1982).
http://dx.doi.org/10.1126/science.218.4569.229
25.
25. Tegze, M. and Bortel, G. , “ Atomic structure of a single large biomolecule from diffraction patterns of random orientations,” J. Struct. Biol. 179, 4145 (2012).
http://dx.doi.org/10.1016/j.jsb.2012.04.014
26.
26. Xu, R. , Jiang, H. , Song, C. , Rodriguez, J. A. , Huang, Z. , Chen, C.-C. , Nam, D. , Park, J. , Gallagher-Jones, M. , Kim, S. , Kim, S. , Suzuki, A. , Takayama, Y. , Oroguchi, T. , Takahashi, Y. , Fan, J. , Zou, Y. , Hatsui, T. , Inubushi, Y. , Kameshima, T. , Yonekura, K. , Tono, K. , Togashi, T. , Sato, T. , Yamamoto, M. , Nakasako, M. , Yabashi, M. , Ishikawa, T. , and Miao, J. , “ Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses,” Nat. Commun. 5, 4061 (2014).
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/4/10.1063/1.4919740
Loading
/content/aca/journal/sdy/2/4/10.1063/1.4919740
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/4/10.1063/1.4919740
2015-04-30
2016-09-27

Abstract

Single-particle structure recovery without crystals or radiation damage is a revolutionary possibility offered by X-rayfree-electron lasers, but it involves formidable experimental and data-analytical challenges. Many of these difficulties were encountered during the development of cryogenicelectron microscopy of biological systems. Electron microscopy of biological entities has now reached a spatial resolution of about 0.3 nm, with a rapidly emerging capability to map discrete and continuous conformational changes and the energy landscapes of biomolecular machines. Nonetheless, single-particle imaging by X-rayfree-electron lasers remains important for a range of applications, including the study of large “electron-opaque” objects and time-resolved examination of key biological processes at physiological temperatures. After summarizing the state of the art in the study of structure and conformations by cryogenicelectron microscopy, we identify the primary opportunities and challenges facing X-ray-based single-particle approaches, and possible means for circumventing them.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/4/1.4919740.html;jsessionid=i5vrQt31xqCVIOuWUeAY9UEg.x-aip-live-02?itemId=/content/aca/journal/sdy/2/4/10.1063/1.4919740&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/4/10.1063/1.4919740&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/4/10.1063/1.4919740'
Right1,Right2,Right3,