Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/4/10.1063/1.4921220
1.
1. Barends, T. R. M. et al., “ De novo protein crystal structure determination from X-ray free-electron laser data,” Nature 505, 244247 (2014).
http://dx.doi.org/10.1038/nature12773
2.
2. Becker, J. and Graafsma, H. , “ Advantages of a logarithmic sampling scheme for XPCS experiments at the European XFEL using the AGIPD detector,” J. Instrum. 7, P04012 (2012).
http://dx.doi.org/10.1088/1748-0221/7/04/P04012
3.
3. Bogan, M. J. et al., “ Single particle X-ray diffractive imaging,” Nano Lett. 8, 310316 (2008).
http://dx.doi.org/10.1021/nl072728k
4.
4. Botha, S. et al., “ Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 71, 387397 (2015).
http://dx.doi.org/10.1107/S1399004714026327
5.
5. Boutet, S. et al., “ High-resolution protein structure determination by serial femtosecond crystallography,” Science 337, 362364 (2012).
http://dx.doi.org/10.1126/science.1217737
6.
6. Chapman, H. N. et al., “ Femtosecond X-ray protein nanocrystallography,” Nature 470, 7377 (2011).
http://dx.doi.org/10.1038/nature09750
7.
7. Cohen, S. et al., “ Goniometer-based femtosecond crystallography with X-ray free electron lasers,” Proc. Natl. Acad. Sci. U. S. A. 111, 1712217127 (2014).
http://dx.doi.org/10.1073/pnas.1418733111
8.
8. DePonte, D. P. et al., “ Gas dynamic virtual nozzle for generation of microscopic droplet streams,” J. Phys. D: Appl. Phys. 41, 195505 (2008).
http://dx.doi.org/10.1088/0022-3727/41/19/195505
9.
9. DePonte, D. P. et al., “ SEM imaging of liquid jets,” Micron 40, 507509 (2009).
http://dx.doi.org/10.1016/j.micron.2008.12.009
10.
10. Fenalti, G. et al., “ Structural basis for bifunctional peptide recognition at human δ-opioid receptor,” Nat. Struct. Mol. Biol. 22, 265268 (2015).
http://dx.doi.org/10.1038/nsmb.2965
11.
11. Hantke, M. F. et al., “ High-throughput imaging of heterogeneous cell organelles with an X-ray laser,” Nat. Photonics 8, 943949 (2014).
http://dx.doi.org/10.1038/nphoton.2014.270
12.
12. Hart, P. et al., “ The CSPAD megapixel X-ray camera at LCLS,” Proc. SPIE 8504, 85040C (2012).
http://dx.doi.org/10.1117/12.930924
13.
13. Hattne, J. et al., “ Thermolysin structure determined by free-electron laser,” Nat. Methods 11, 545548 (2014).
http://dx.doi.org/10.1038/nmeth.2887
14.
14. Henderson, R. , “ Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction,” Proc. R. Soc. London, Ser. B 241, 68 (1990).
http://dx.doi.org/10.1098/rspb.1990.0057
15.
15. Heymann, M. et al., “ Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction,” IUCrJ 1, 349360 (2014).
http://dx.doi.org/10.1107/S2052252514016960
16.
16. Hirata, K. et al., “ Determination of damage-free crystal structure of an X-ray-sensitive protein using an X-ray FEL,” Nat. Methods 11, 734736 (2014).
http://dx.doi.org/10.1038/nmeth.2962
17.
17. Hunter, M. S. et al., “ Fixed-target protein serial microcrystallography with an X-ray free electron laser,” Sci. Rep. 4, 6026 (2014).
http://dx.doi.org/10.1038/srep06026
18.
18. Johansson, L. C. et al., “ Lipidic phase membrane protein serial femtosecond crystallography,” Nat. Methods 9, 263265 (2012).
http://dx.doi.org/10.1038/nmeth.1867
19.
19. Johansson, L. C. et al., “ Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography,” Nat. Commun. 4, 2911 (2013).
http://dx.doi.org/10.1038/ncomms3911
20.
20. Kameshima, T. et al., “ Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments,” Rev. Sci. Instrum. 85, 033110 (2014).
http://dx.doi.org/10.1063/1.4867668
21.
21. Kern, J. et al., “ Room temperature femtosecond X-ray diffraction of photosystem II microcrystals,” Proc. Natl. Acad. Sci. U. S. A. 109, 97219726 (2012).
http://dx.doi.org/10.1073/pnas.1204598109
22.
22. Kern, J. et al., “ Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature,” Science 340, 491495 (2013).
http://dx.doi.org/10.1126/science.1234273
23.
23. Kern, J. et al., “ Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy,” Nat. Commun. 5, 4371 (2014).
http://dx.doi.org/10.1038/ncomms5371
24.
24. Kirian, R. A. et al., “ Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals,” Acta Crystallogr., Sect. A: Found. Crystallogr. 67, 131140 (2011).
http://dx.doi.org/10.1107/S0108767310050981
25.
25. Kirian, R. A. et al., “ Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with x-ray free-electron lasers,” Struct. Dyn. (to be published) (2015).
26.
26. Kupitz, C. et al., “ Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser,” Nature 513, 261265 (2014).
http://dx.doi.org/10.1038/nature13453
27.
27. Liu, P. , Ziemann, P. J. , Kittelson, D. B. , and McMurry, P. H. , “ Generating particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansions,” Aerosol Sci. Technol. 22, 293313 (1995).
http://dx.doi.org/10.1080/02786829408959748
28.
28. Liu, W. et al., “ Serial femtosecond crystallography of G protein-coupled receptors,” Science 342, 15211524 (2013).
http://dx.doi.org/10.1126/science.1244142
29.
29. Loh, N. D. et al., “ Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight,” Nature 486, 513517 (2012).
http://dx.doi.org/10.1038/nature11222
30.
30. Neutze, R. et al., “ Potential for biomolecular imaging with femtosecond X-ray pulses,” Nature 406, 752757 (2000).
http://dx.doi.org/10.1038/35021099
31.
31. Nogly, P. et al., “ Lipidic cubic phase serial millisecond crystallography using synchrotron radiation,” IUCrJ 2, 168176 (2015).
http://dx.doi.org/10.1107/S2052252514026487
32.
32. Owen, R. L. , Rudino-Pinera, E. , and Garman, E. F. , “ Experimental determination of the radiation dose limit for cryocooled protein crystals,” Proc. Natl. Acad. Sci. U.S.A. 103, 49124917 (2006).
http://dx.doi.org/10.1073/pnas.0600973103
33.
33. Pedrini, B. et al., “ 7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source,” Philos. Trans. R. Soc. London, Ser. B 369, 20130500 (2014).
http://dx.doi.org/10.1098/rstb.2013.0500
34.
34. Redecke, L. et al., “ Native inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser,” Science 339, 227230 (2013).
http://dx.doi.org/10.1126/science.1229663
35.
35. Roessler, C. G. et al., “ Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines,” J. Synchrotron Radiat. 20, 805808 (2013).
http://dx.doi.org/10.1107/S0909049513020372
36.
36. Sawaya, M. R. et al., “ Protein crystal structure obtained at 2.9 A resolution from injecting bacterial cells into an X-ray free-electron laser beam,” Proc. Natl. Acad. Sci. U.S.A. 111, 1276912774 (2014).
http://dx.doi.org/10.1073/pnas.1413456111
37.
37. Seibert, M. M. et al., “ Single mimivirus particles intercepted and imaged with an X-ray laser,” Nature 470, 7881 (2011).
http://dx.doi.org/10.1038/nature09748
38.
38. Shapiro, D. et al., “ Powder diffraction from a continuous microjet of submicrometer protein crystals,” J. Synchrotron Radiat. 15, 593599 (2008).
http://dx.doi.org/10.1107/S0909049508024151
39.
39. Sierra, R. G. et al., “ Nanoflow electrospinning serial femtosecond crystallography,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 68, 15841587 (2012).
http://dx.doi.org/10.1107/S0907444912038152
40.
40. Spence, J. C. and Chapman, H. N. , “ The birth of a new field,” Philos. Trans R. Soc. London, Ser. B 369, 20130309 (2014).
http://dx.doi.org/10.1098/rstb.2013.0309
41.
41. Stan, C. et al., “ The fluid dynamics of microjet explosions caused by extremely intense X-ray pulses,” 2014, see http://meetings.aps.org/Meeting/DFD14/Session/G10.10.
42.
42. Starodub, D. et al., “ Single-particle structure determination by correlations of snapshot X-ray diffraction patterns,” Nat. Commun. 3, 1276 (2012).
http://dx.doi.org/10.1038/ncomms2288
43.
43. Suga, M. et al., “ Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses,” Nature 517, 99103 (2015).
http://dx.doi.org/10.1038/nature13991
44.
44. Sugahara, M. et al., “ Grease matrix as a versatile carrier of proteins for serial crystallography,” Nat. Methods 12, 6163 (2015).
http://dx.doi.org/10.1038/nmeth.3172
45.
45. Tenboer, J. et al., “ Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein,” Science 346, 12421246 (2014).
http://dx.doi.org/10.1126/science.1259357
46.
46. Trebbin, M. et al., “ Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions,” Lab Chip 14, 17331745 (2014).
http://dx.doi.org/10.1039/c3lc51363g
47.
47. van der Schot, H. et al., “ Imaging single cells in a beam of live cyanobacteria with an X-ray laser,” Nat. Commun. 6, 5704 (2015).
http://dx.doi.org/10.1038/ncomms6704
48.
48. Wang, D. , Weierstall, U. , Pollack, L. , and Spence, J. , “ Double-focusing mixing jet for X-ray FEL study of chemical kinetics,” J. Synchrotron Radiat. 21, 13641366 (2014).
http://dx.doi.org/10.1107/S160057751401858X
49.
49. Weierstall, U. , “ Liquid sample delivery techniques for serial femtosecond crystallography,” Philos. Trans. R. Soc. London, Ser. B 369, 20130337 (2014).
http://dx.doi.org/10.1098/rstb.2013.0337
50.
50. Weierstall, U. , Spence, J. C. , and Doak, R. B. , “ Injector for scattering measurements on fully solvated biospecies,” Rev. Sci. Instrum. 83, 035108 (2012).
http://dx.doi.org/10.1063/1.3693040
51.
51. Weierstall, U. et al., “ Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography,” Nat. Commun. 5, 3309 (2014).
http://dx.doi.org/10.1038/ncomms4309
52.
52. White, T. A. et al., “ CrystFEL: A software suite for snapshot serial crystallography,” J. Appl. Cryst. 45, 335341 (2012).
http://dx.doi.org/10.1107/S0021889812002312
53.
53. White, T. A. et al., “ Crystallographic data processing for free-electron laser sources,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 69, 12311240 (2013).
http://dx.doi.org/10.1107/S0907444913013620
54.
54. Zarrine-Afsar, A. et al., “ Crystallography on a chip,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 68, 321323 (2012).
http://dx.doi.org/10.1107/S0907444911055296
55.
55. Zhu, D. et al., “ Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source,” Rev. Sci. Instrum. 85, 063106 (2014).
http://dx.doi.org/10.1063/1.4880724
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/4/10.1063/1.4921220
Loading
/content/aca/journal/sdy/2/4/10.1063/1.4921220
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/4/10.1063/1.4921220
2015-05-14
2016-12-07

Abstract

Serial femtosecond crystallography (SFX) uses X-ray pulses from free-electron laser(FEL) sources that can outrun radiation damage and thereby overcome long-standing limits in the structure determination of macromolecular crystals. Intense X-rayFEL pulses of sufficiently short duration allow the collection of damage-free data at room temperature and give the opportunity to study irreversible time-resolved events. SFX may open the way to determine the structure of biological molecules that fail to crystallize readily into large well-diffracting crystals. Taking advantage of FELs with high pulse repetition rates could lead to short measurement times of just minutes. Automated delivery of sample suspensions for SFX experiments could potentially give rise to a much higher rate of obtaining complete measurements than at today's third generation synchrotron radiation facilities, as no crystal alignment or complex robotic motions are required. This capability will also open up extensive time-resolved structural studies. New challenges arise from the resulting high rate of data collection, and in providing reliable sample delivery. Various developments for fully automated high-throughput SFX experiments are being considered for evaluation, including new implementations for a reliable yet flexible sample environment setup. Here, we review the different methods developed so far that best achieve sample delivery for X-rayFEL experiments and present some considerations towards the goal of high-throughput structure determination with X-rayFELs.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/4/1.4921220.html;jsessionid=QYuwzFohx5MsrJjKcMBdMskb.x-aip-live-03?itemId=/content/aca/journal/sdy/2/4/10.1063/1.4921220&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/4/10.1063/1.4921220&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/4/10.1063/1.4921220'
Right1,Right2,Right3,