Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/4/10.1063/1.4921591
1.
1. R. J. Southworth-Davies, M. A. Medina, I. Carmichael, and E. F. Garman, “ Observation of decreased radiation damage at higher dose rates in room temperature protein crystallography,” Structure 15, 15311541 (2007).
http://dx.doi.org/10.1016/j.str.2007.10.013
2.
2. J. M. Holton and K. A. Frankel, “ The minimum crystal size needed for a complete diffraction data set,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 393408 (2010).
http://dx.doi.org/10.1107/S0907444910007262
3.
3. R. Henderson, “ Cryoprotection of protein crystals against radiation damage in electron and X-ray diffraction,” Proc. R. Soc. London, Ser. B 241, 68 (1990).
http://dx.doi.org/10.1098/rspb.1990.0057
4.
4. E. F. Garman and T. R. Schneider, “ Macromolecular Cryocrystallography,” J. Appl. Crystallogr. 30, 211237 (1997).
http://dx.doi.org/10.1107/S0021889897002677
5.
5. R. M. Bill, P. J. Henderson, S. Iwata, E. R. Kunji, H. Michel, R. Neutze, S. Newstead, B. Poolman, C. G. Tate, and H. Vogel, “ Overcoming barriers to membrane protein structure determination,” Nat. Biotechnol. 29, 335340 (2011).
http://dx.doi.org/10.1038/nbt.1833
6.
6. A. McPherson and J. A. Gavira, “ Introduction to protein crystallization,” Acta Crystallogr., Sect. F: Struct. Biol. Commun. 70, 220 (2014).
http://dx.doi.org/10.1107/S2053230X13033141
7.
7. M. Weselak, M. G. Patch, T. L. Selby, G. Knebel, and R. C. Stevens, “ Robotics for automated crystal formation and analysis,” Methods Enzymol. 368, 4576 (2003).
http://dx.doi.org/10.1016/S0076-6879(03)68004-3
8.
8. J. P. K. Doye and W. C. K. Poon, “ Protein crystallization in vivo,” Curr. Opin. Colloid Interface Sci. 11, 4046 (2006).
http://dx.doi.org/10.1016/j.cocis.2005.10.002
9.
9. A. McPherson, Crystallization of Biological Macromolecules ( Cold Spring Harbor Laboratory Press, 1999).
10.
10. P. M. Colman, E. Suzuki, and A. Van Donkelaar, “ The structure of cucurbitin: Subunit symmetry and organization in situ,” Eur. J. Biochem. 103, 585588 (1980).
http://dx.doi.org/10.1111/j.1432-1033.1980.tb05983.x
11.
11. K. Müntz, “ Deposition of storage proteins,” Plant Mol. Biol. 38, 7799 (1998).
http://dx.doi.org/10.1023/A:1006020208380
12.
12. G. Dodson and D. Steiner, “ The role of assembly in insulin's biosynthesis,” Curr. Opin. Struct. Biol. 8, 189194 (1998).
http://dx.doi.org/10.1016/S0959-440X(98)80037-7
13.
13. M. Veenhuis, J. A. Kiel, and I. J. van der Klei, “ Peroxisome assembly in yeast,” Microsc. Res. Tech. 61, 139150 (2003).
http://dx.doi.org/10.1002/jemt.10323
14.
14. H. Höfte and H. R. Whiteley, “ Insecticidal crystal proteins of Bacillus thuringiensis,” Microbiol. Rev. 53, 242255 (1989).
15.
15. G. F. Rohrmann, “ Polyhedrin structure,” J. Gen. Virol. 67, 14991513 (1986).
http://dx.doi.org/10.1099/0022-1317-67-8-1499
16.
16. F. Coulibaly, E. Chiu, K. Ikeda, S. Gutmann, P. W. Haebel, C. Schulze-Briese, H. Mori, and P. Metcalf, “ The molecular organization of cypovirus polyhedra,” Nature 446, 97101 (2007).
http://dx.doi.org/10.1038/nature05628
17.
17. G. Y. Fan, F. Maldonado, Y. Zhang, R. Kincaid, M. H. Ellisman, and L. N. Gastinel, “ In vivo calcineurin crystals formed using the baculovirus expression system,” Microsc. Res. Tech. 34, 7786 (1996).
http://dx.doi.org/10.1002/(SICI)1097-0029(19960501)34:1<77::AID-JEMT11>3.0.CO;2-M
18.
18. H. Hasegawa, J. Wendling, F. He, E. Trilisky, R. Stevenson, H. Franey, F. Kinderman, G. Li, D. M. Piedmonte, T. Osslund, M. Shen, and R. R. Ketchem, “ In vivo crystallization of human IgG in the endoplasmic reticulum of engineered Chinese hamster ovary (CHO) cells,” J. Biol. Chem. 286, 1991719931 (2011).
http://dx.doi.org/10.1074/jbc.M110.204362
19.
19. H. Hasegawa, C. Forte, I. Barber, S. Turnbaugh, J. Stoops, M. Shen, and A. C. Lim, “ Modulation of in vivo IgG crystallization in the secretory pathway by heavy chain isotype class switching and N-linked glycosylation,” Biochim. Biophys. Acta 1843, 13251338 (2014).
http://dx.doi.org/10.1016/j.bbamcr.2014.03.024
20.
20. F. X. Gallat, N. Matsugaki, N. P. Coussens, K. J. Yagi, M. Boudes, T. Higashi, D. Tsuji, Y. Tatano, M. Suzuki, E. Mizohata, K. Tono, Y. Joti, T. Kameshima, J. Park, C. Song, T. Hatsui, M. Yabashi, E. Nango, K. Itoh, F. Coulibaly, S. Tobe, S. Ramaswamy, B. Stay, S. Iwata, and L. M. Chavas, “ In vivo crystallography at X-ray free-electron lasers: the next generation of structural biology?,” Philos. Trans. R. Soc. London, Ser. B: Biol. Sci. 369, 20130497 (2014).
http://dx.doi.org/10.1098/rstb.2013.0497
21.
21. D. Axford, X. Ji, D. I. Stuart, and G. Sutton, “ In cellulo structure determination of a novel cypovirus polyhedrin,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 70, 14351441 (2014).
http://dx.doi.org/10.1107/S1399004714004714
22.
22. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “ Potential for biomolecular imaging with femtosecond X-ray pulses,” Nature 406, 752757 (2000).
http://dx.doi.org/10.1038/35021099
23.
23. H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall, R. B. Doak, F. R. Maia, A. V. Martin, I. Schlichting, L. Lomb, N. Coppola, R. L. Shoeman, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M. J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Hömke, C. Reich, D. Pietschner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K. U. Kühnel, M. Messerschmidt, J. D. Bozek, S. P. Hau-Riege, M. Frank, C. Y. Hampton, R. G. Sierra, D. Starodub, G. J. Williams, J. Hajdu, N. Timneanu, M. M. Seibert, J. Andreasson, A. Rocker, O. Jönsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C. D. Schröter, F. Krasniqi, M. Bott, K. E. Schmidt, X. Wang, I. Grotjohann, J. M. Holton, T. R. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, and J. C. Spence, “ Femtosecond X-ray protein nanocrystallography,” Nature 470, 7377 (2011).
http://dx.doi.org/10.1038/nature09750
24.
24. S. Boutet, L. Lomb, G. J. Williams, T. R. Barends, A. Aquila, R. B. Doak, U. Weierstall, D. P. DePonte, J. Steinbrener, R. L. Shoeman, M. Messerschmidt, A. Barty, T. A. White, S. Kassemeyer, R. A. Kirian, M. M. Seibert, P. A. Montanez, C. Kenney, R. Herbst, P. Hart, J. Pines, G. Haller, S. M. Gruner, H. T. Philipp, M. W. Tate, M. Hromalik, L. J. Koerner, N. van Bakel, J. Morse, W. Ghonsalves, D. Arnlund, M. J. Bogan, C. Caleman, R. Fromme, C. Y. Hampton, M. S. Hunter, L. C. Johansson, G. Katona, C. Kupitz, M. Liang, A. V. Martin, K. Nass, L. Redecke, F. Stellato, N. Timneanu, D. Wang, N. A. Zatsepin, D. Schafer, J. Defever, R. Neutze, P. Fromme, J. C. Spence, H. N. Chapman, and I. Schlichting, “ High-resolution protein structure determination by serial femtosecond crystallography,” Science 337, 362364 (2012).
http://dx.doi.org/10.1126/science.1217737
25.
25. T. A. White, R. A. Kirian, A. V. Martin, A. Aquila, K. Nass, A. Barty, and H. N. Chapman, “ CrystFEL: A software suite for snapshot serial crystallography,” J. Appl. Crystallogr. 45, 335341 (2012).
http://dx.doi.org/10.1107/S0021889812002312
26.
26. A. Barty, R. A. Kirian, F. R. N. C. Maia, M. Hantke, C. H. Yoon, T. A. White, and H. N. Chapman, “ Cheetah: Software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data,” J. Appl. Crystallogr. 47, 11181131 (2014).
http://dx.doi.org/10.1107/S1600576714007626
27.
27. R. A. Kirian, T. A. White, J. M. Holton, H. N. Chapman, P. Fromme, A. Barty, L. Lomb, A. Aquila, F. R. Maia, A. V. Martin, R. Fromme, X. Wang, M. S. Hunter, K. E. Schmidt, and J. C. Spence, “ Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals,” Acta Crystallogr., Sect. A: Found. Crystallogr. 67, 131140 (2011).
http://dx.doi.org/10.1107/S0108767310050981
28.
28. D. P. DePonte, U. Weierstall, K. Schmidt, J. Warner, D. Starodub, J. C. H. Spence, and R. B. Doak, “ Gas dynamic virtual nozzle for generation of microscopic droplet streams,” J. Phys. D: Appl. Phys. 41, 195505 (2008).
http://dx.doi.org/10.1088/0022-3727/41/19/195505
29.
29. U. Weierstall, D. James, C. Wang, T. A. White, D. Wang, W. Liu, J. C. Spence, R. Bruce Doak, G. Nelson, P. Fromme, R. Fromme, I. Grotjohann, C. Kupitz, N. A. Zatsepin, H. Liu, S. Basu, D. Wacker, G. W. Han, V. Katritch, S. Boutet, M. Messerschmidt, G. J. Williams, J. E. Koglin, M. Seibert, M. Klinker, C. Gati, R. L. Shoeman, A. Barty, H. N. Chapman, R. A. Kirian, K. R. Beyerlein, R. C. Stevens, D. Li, S. T. Shah, N. Howe, M. Caffrey, and V. Cherezov, “ Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography,” Nat. Commun. 5, 3309 (2014).
http://dx.doi.org/10.1038/ncomms4309
30.
30. L. Redecke, K. Nass, D. P. DePonte, T. A. White, D. Rehders, A. Barty, F. Stellato, M. Liang, T. R. Barends, S. Boutet, G. J. Williams, M. Messerschmidt, M. M. Seibert, A. Aquila, D. Arnlund, S. Bajt, T. Barth, M. J. Bogan, C. Caleman, T. C. Chao, R. B. Doak, H. Fleckenstein, M. Frank, R. Fromme, L. Galli, I. Grotjohann, M. S. Hunter, L. C. Johansson, S. Kassemeyer, G. Katona, R. A. Kirian, R. Koopmann, C. Kupitz, L. Lomb, A. V. Martin, S. Mogk, R. Neutze, R. L. Shoeman, J. Steinbrener, N. Timneanu, D. Wang, U. Weierstall, N. A. Zatsepin, J. C. Spence, P. Fromme, I. Schlichting, M. Duszenko, C. Betzel, and H. N. Chapman, “ Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser,” Science 339, 227230 (2013).
http://dx.doi.org/10.1126/science.1229663
31.
31. J. Kern, R. Alonso-Mori, R. Tran, J. Hattne, R. J. Gildea, N. Echols, C. Glöckner, J. Hellmich, H. Laksmono, R. G. Sierra, B. Lassalle-Kaiser, S. Koroidov, A. Lampe, G. Han, S. Gul, D. Difiore, D. Milathianaki, A. R. Fry, A. Miahnahri, D. W. Schafer, M. Messerschmidt, M. M. Seibert, J. E. Koglin, D. Sokaras, T. C. Weng, J. Sellberg, M. J. Latimer, R. W. Grosse-Kunstleve, P. H. Zwart, W. E. White, P. Glatzel, P. D. Adams, M. J. Bogan, G. J. Williams, S. Boutet, J. Messinger, A. Zouni, N. K. Sauter, V. K. Yachandra, U. Bergmann, and J. Yano, “ Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature,” Science 340, 491495 (2013).
http://dx.doi.org/10.1126/science.1234273
32.
32. T. R. Barends, L. Foucar, R. L. Shoeman, S. Bari, S. W. Epp, R. Hartmann, G. Hauser, M. Huth, C. Kieser, L. Lomb, K. Motomura, K. Nagaya, C. Schmidt, R. Strecker, D. Anielski, R. Boll, B. Erk, H. Fukuzawa, E. Hartmann, T. Hatsui, P. Holl, Y. Inubushi, T. Ishikawa, S. Kassemeyer, C. Kaiser, F. Koeck, N. Kunishima, M. Kurka, D. Rolles, B. Rudek, A. Rudenko, T. Sato, C. D. Schroeter, H. Soltau, L. Strueder, T. Tanaka, T. Togashi, K. Tono, J. Ullrich, S. Yase, S. I. Wada, M. Yao, M. Yabashi, K. Ueda, and I. Schlichting, “ Anomalous signal from S atoms in protein crystallographic data from an X-ray free-electron laser,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 69, 838842 (2013).
http://dx.doi.org/10.1107/S0907444913002448
33.
33. T. R. Barends, L. Foucar, S. Botha, R. B. Doak, R. L. Shoeman, K. Nass, J. E. Koglin, G. J. Williams, S. Boutet, M. Messerschmidt, and I. Schlichting, “ De novo protein crystal structure determination from X-ray free-electron laser data,” Nature 505, 244247 (2014).
http://dx.doi.org/10.1038/nature12773
34.
34. M. R. Sawaya, D. Cascio, M. Gingery, J. Rodriguez, L. Goldschmidt, J. P. Colletier, M. M. Messerschmidt, S. Boutet, J. E. Koglin, G. J. Williams, A. S. Brewster, K. Nass, J. Hattne, S. Botha, R. B. Doak, R. L. Shoeman, D. P. DePonte, H. W. Park, B. A. Federici, N. K. Sauter, I. Schlichting, and D. S. Eisenberg, “ Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam,” Proc. Natl. Acad. Sci. U.S.A. 111, 1276912774 (2014).
http://dx.doi.org/10.1073/pnas.1413456111
35.
35. C. Gati, G. Bourenkov, M. Klinge, D. Rehders, F. Stellato, D. Oberthür, O. Yefanov, B. P. Sommer, S. Mogk, M. Duszenko, C. Betzel, T. R. Schneider, H. N. Chapman, and L. Redecke, “ Serial crystallography on in vivo grown microcrystals using synchrotron radiation,” IUCrJ 1, 8794 (2014).
http://dx.doi.org/10.1107/S2052252513033939
36.
36. F. Coulibaly, E. Chiu, S. Gutmann, C. Rajendran, P. W. Haebel, K. Ikeda, H. Mori, V. K. Ward, C. Schulze-Briese, and P. Metcalf, “ The atomic structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruses,” Proc. Natl. Acad. Sci. U.S.A. 106, 2220522210 (2009).
http://dx.doi.org/10.1073/pnas.0910686106
37.
37. X. Ji, G. Sutton, G. Evans, D. Axford, R. Owen, and D. I. Stuart, “ How baculovirus polyhedra fit square pegs into round holes to robustly package viruses,” EMBO J. 29, 505514 (2010).
http://dx.doi.org/10.1038/emboj.2009.352
38.
38. R. Koopmann, K. Cupelli, L. Redecke, K. Nass, D. P. Deponte, T. A. White, F. Stellato, D. Rehders, M. Liang, J. Andreasson, A. Aquila, S. Bajt, M. Barthelmess, A. Barty, M. J. Bogan, C. Bostedt, S. Boutet, J. D. Bozek, C. Caleman, N. Coppola, J. Davidsson, R. B. Doak, T. Ekeberg, S. W. Epp, B. Erk, H. Fleckenstein, L. Foucar, H. Graafsma, L. Gumprecht, J. Hajdu, C. Y. Hampton, A. Hartmann, R. Hartmann, G. Hauser, H. Hirsemann, P. Holl, M. S. Hunter, S. Kassemeyer, R. A. Kirian, L. Lomb, F. R. Maia, N. Kimmel, A. V. Martin, M. Messerschmidt, C. Reich, D. Rolles, B. Rudek, A. Rudenko, I. Schlichting, J. Schulz, M. M. Seibert, R. L. Shoeman, R. G. Sierra, H. Soltau, S. Stern, L. Strüder, N. Timneanu, J. Ullrich, X. Wang, G. Weidenspointner, U. Weierstall, G. J. Williams, C. B. Wunderer, P. Fromme, J. C. Spence, T. Stehle, H. N. Chapman, C. Betzel, and M. Duszenko, “ In vivo protein crystallization opens new routes in structural biology,” Nat. Methods 9, 259262 (2012).
http://dx.doi.org/10.1038/nmeth.1859
39.
39. A. Brandariz-Nuñez, R. Menaya-Vargas, J. Benavente, and J. A. Martínez-Costas, “ Versatile molecular tagging method for targeting proteins to avian reovirus muNS inclusions. Use in protein immobilization and purification,” PLoS One 5, e13961 (2010).
http://dx.doi.org/10.1371/journal.pone.0013961
40.
40. A. Brandariz-Nuñez, R. Menaya-Vargas, J. Benavente, and J. Martínez-Costas, “ Avian reovirus NS protein forms homo-oligomeric inclusions in a microtubule-independent fashion, which involves specific regions of its C-terminal domain,” J. Virol. 84, 42894301 (2010).
http://dx.doi.org/10.1128/JVI.02534-09
41.
41. S. Ally, A. G. Larson, K. Barlan, S. E. Rice, and V. I. Gelfand, “ Opposite-polarity motors activate one another to trigger cargo transport in live cells,” J. Cell Biol. 187, 10711082 (2009).
http://dx.doi.org/10.1083/jcb.200908075
42.
42. N. Zurek, L. Sparks, and G. Voeltz, “ Reticulon short hairpin transmembrane domains are used to shape ER tubules,” Traffic 12, 2841 (2011).
http://dx.doi.org/10.1111/j.1600-0854.2010.01134.x
43.
43. J. A. Steinkamp, R. C. Habbersett, and C. C. Stewart, “ A modular detector for flow cytometric multicolor fluorescence measurements,” Cytometry 8, 353365 (1987).
http://dx.doi.org/10.1002/cyto.990080403
44.
44. I. Majoul, L. Gao, E. Betzig, D. Onichtchouk, E. Butkevich, Y. Kozlov, F. Bukauskas, M. L. V. Bennett, J. Lippincott-Schwartz, and R. Duden, “ Fast structural responses of gap junction membrane domains to AB5 toxins,” Proc. Natl. Acad. Sci. U.S.A. 110, E41254133 (2013).
http://dx.doi.org/10.1073/pnas.1315850110
45.
45. F. F. Craig, A. C. Simmonds, D. Watmore, F. McCapra, and M. R. White, “ Membrane-permeable luciferin esters for assay of firefly luciferase in live intact cells,” Biochem. J. 276, 637641 (1991).
46.
46. I. Majoul, M. Straub, S. W. Hell, R. Duden, and H. D. Söling, “ KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: Measurements in living cells using FRET,” Dev. Cell 1, 139153 (2001).
http://dx.doi.org/10.1016/S1534-5807(01)00004-1
47.
47. R. C. Jones, “ Avian reovirus infections,” Rev. Sci. Tech. 19, 614625 (2000).
48.
48. L. Pinto da Silva and J. C. Esteves da Silva, “ Firefly chemiluminescence and bioluminescence: Efficient generation of excited states,” ChemPhysChem 13, 22572262 (2012).
http://dx.doi.org/10.1002/cphc.201200195
49.
49. T. Nakatsu, S. Ichiyama, J. Hiratake, A. Saldanha, N. Kobashi, K. Sakata, and H. Kato, “ Structural basis for the spectral difference in luciferase bioluminescence,” Nature 440, 372376 (2006).
http://dx.doi.org/10.1038/nature04542
50.
50. G. A. Keller, S. Gould, M. Deluca, and S. Subramani, “ Firefly luciferase is targeted to peroxisomes in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 84, 32643268 (1987).
http://dx.doi.org/10.1073/pnas.84.10.3264
51.
51. G. Lametschwandtner, C. Brocard, M. Fransen, P. Van Veldhoven, J. Berger, and A. Hartig, “ The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it,” J. Biol. Chem. 273, 3363533643 (1998).
http://dx.doi.org/10.1074/jbc.273.50.33635
52.
52. M. Schrader and H. D. Fahimi, “ The peroxisome: still a mysterious organelle,” Histochem. Cell Biol. 129, 421440 (2008).
http://dx.doi.org/10.1007/s00418-008-0396-9
53.
53. F. Fan and K. V. Wood, “ Bioluminescent assays for high-throughput screening,” Assay Drug Dev. Technol. 5, 127136 (2007).
http://dx.doi.org/10.1089/adt.2006.053
54.
54. T. F. Massoud, R. Paulmurugan, A. De, P. Ray, and S. S. Gambhir, “ Reporter gene imaging of protein-protein interactions in living subjects,” Curr. Opin. Biotechnol. 18, 3137 (2007).
http://dx.doi.org/10.1016/j.copbio.2007.01.007
55.
55. A. Lundin, “ Optimization of the firefly luciferase reaction for analytical purposes,” Adv. Biochem. Eng. Biotechnol. 145, 3162 (2014).
56.
56. E. Conti, L. F. Lloyd, J. Akins, N. P. Franks, and P. Brick, “ Crystallization and preliminary diffraction studies of firefly luciferase from Photinus pyralis,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 52, 876878 (1996).
http://dx.doi.org/10.1107/S0907444996002405
57.
57. D. S. Auld, S. Lovell, N. Thorne, W. A. Lea, D. J. Maloney, M. Shen, G. Rai, K. P. Battaile, C. J. Thomas, A. Simeonov, R. P. Hanzlik, and J. Inglese, “ Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124,” Proc. Natl. Acad. Sci. U.S.A. 107, 48784883 (2010).
http://dx.doi.org/10.1073/pnas.0909141107
58.
58. K. Anduleit, G. Sutton, J. M. Diprose, P. P. Mertens, J. M. Grimes, and D. I. Stuart, “ Crystal lattice as biological phenotype for insect viruses,” Protein Sci. 14, 27412743 (2005).
http://dx.doi.org/10.1110/ps.051516405
59.
59. H. Wang, E. Wei, A. D. Quiroga, X. Sun, N. Touret, and R. Lehner, “ Altered lipid droplet dynamics in hepatocytes lacking triacylglycerol hydrolase expression,” Mol. Biol. Cell 21, 19912000 (2010).
http://dx.doi.org/10.1091/mbc.E09-05-0364
60.
60.See supplementary material at http://dx.doi.org/10.1063/1.4921591 for localization data of in vivo firefly luciferase crystals (see Fig. S1), images of virus-free vs. baculovirus induced in vivo crystallization of luciferase (see Fig. S2), images and movie of bioluminescence induced by enzymatically active soluble firefly luciferase within living cells (see Fig. S3 and movie S3), images of GFP-μNS and luciferase crystals grown within the same cell (see Fig. S4), and the stability analysis of isolated GFP-μNS crystals preliminary to x-ray diffraction experiments (see Fig. S5).[Supplementary Material]
61.
61. T. Ohkawa, L. E. Volkman, and M. D. Welch, “ Actin-based motility drives baculovirus transit to the nucleus and cell surface,” J. Cell Biol. 190, 187195 (2010).
http://dx.doi.org/10.1083/jcb.201001162
62.
62. J. C. Spence, “ Approaches to time-resolved diffraction using an XFEL,” Faraday Discuss. 171, 429438 (2014).
http://dx.doi.org/10.1039/C4FD00025K
63.
63. R. Neutze and K. Moffat, “ Time-resolved structural studies at synchrotrons and X-ray free electron lasers: Opportunities and challenges,” Curr. Opin. Struct. Biol. 22, 651659 (2012).
http://dx.doi.org/10.1016/j.sbi.2012.08.006
64.
64. H. Mori, R. Ito, H. Nakazawa, M. Sumida, F. Matsubara, and Y. Minobe, “ Expression of Bombyx mori cytoplasmic polyhedrosis virus polyhedrin in insect cells by using a baculovirus expression vector, and its assembly into polyhedra,” J. Gen. Virol. 74, 99102 (1993).
http://dx.doi.org/10.1099/0022-1317-74-1-99
65.
65. F. Stellato, D. Oberthür, M. Liang, R. Bean, C. Gati, O. Yefanov, A. Barty, A. Burkhardt, P. Fischer, L. Galli, R. A. Kirian, J. Meyer, S. Panneerselvam, C. H. Yoon, F. Chervinskii, E. Speller, T. A. White, C. Betzel, A. Meents, and H. N. Chapman, “ Room-temperature macromolecular serial crystallography using synchrotron radiation,” IUCrJ 1, 204212 (2014).
http://dx.doi.org/10.1107/S2052252514010070
66.
66. M. S. Hunter, B. Segelke, M. Messerschmidt, G. J. Williams, N. A. Zatsepin, A. Barty, W. H. Benner, D. B. Carlson, M. Coleman, A. Graf, S. P. Hau-Riege, T. Pardini, M. M. Seibert, J. Evans, S. Boutet, and M. Frank, “ Fixed-target protein serial microcrystallography with an x-ray free electron laser,” Sci. Rep. 4, 6026 (2014).
http://dx.doi.org/10.1038/srep06026
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/4/10.1063/1.4921591
Loading
/content/aca/journal/sdy/2/4/10.1063/1.4921591
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/4/10.1063/1.4921591
2015-05-22
2016-12-09

Abstract

X-ray crystallography requires sufficiently large crystals to obtain structural insights at atomic resolution, routinely obtained by time-consuming screening. Recently, successful data collection was reported from protein microcrystals grown within living cells using highly brilliant free-electron laser and third-generation synchrotron radiation. Here, we analyzed crystal growth of firefly luciferase and Green Fluorescent Protein-tagged reovirus μNS by live-cell imaging, showing that dimensions of living cells did not limit crystal size. The crystallization process is highly dynamic and occurs in different cellular compartments. protein crystallization offers exciting new possibilities for proteins that do not form crystals .

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/4/1.4921591.html;jsessionid=XVaWvU2PMExdQprRKJ9Ul_FW.x-aip-live-02?itemId=/content/aca/journal/sdy/2/4/10.1063/1.4921591&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/4/10.1063/1.4921591&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/4/10.1063/1.4921591'
Right1,Right2,Right3,