Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. Ackermann et al., “ Operation of a free-electron laser from the extreme ultraviolet to the water window,” Nat. Photonics 1, 336342 (2007).
2. P. Emma et al., “ First lasing and operation of an angstrom-wavelength free-electron laser,” Nat. Photonics 4, 641647 (2010).
3. T. Ishikawa et al., “ A compact X-ray free-electron laser emitting in the sub-angstrom region,” Nat. Photonics 6, 540544 (2012).
4. E. Allaria et al., “ Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet,” Nat. Photonics 6, 699704 (2012).
5. I. Grguras et al., “ Ultrafast X-ray pulse characterization at free-electron lasers,” Nat. Photonics 6(12), 852857 (2012).
6. J. Ulrich, A. Rudenko, and R. Moshammer, “ Free-electron lasers: new avenues in molecular physics and photochemistry,” Annu. Rev. Phys. Chem. 63, 635660 (2012).
7. A. Barty, J. Küpper, and H. N. Chapman, “ Molecular imaging using X-ray free-electron lasers,” Annual Rev. Phys. Chem. 64, 415435 (2013).
8. M. Altarelli et al., “ The European x-ray free-electron laser,” Technical Design Report No. 97, DESY, 2006, pp. 126.
9. A. L. Cavalieri et al., “ Clocking femtosecond X-rays,” Phys. Rev. Lett. 94, 114801 (2005).
10. S. Düsterer et al., “ Femtosecond X-ray pulse length characterization at the Linac Coherent Light Source free-electron laser,” New J. Phys. 13, 093024 (2011).
11. J. M. Byrd, L. Doolittle, G. Huang, J. W. Staples, R. B. Wilcox, J. Arthur, J. C. Frisch, and W. E. White, “ Femtosecond synchronization of laser systems for the LCLS,” in Proceedings of IPAC2010 (2010).
12. J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “ Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733736 (2008).
13. A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “ Optical flywheels with attosecond jitter,” Nat. Photonics 6(2), 97100 (2012).
14. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “ Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express 19(15), 1451814525 (2011).
15. J. Kim, J. Chen, Z. Zhang, F. Wong, F. X. Kärtner, F. Loehl, and H. Schlarb, “ Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator,” Opt. Lett. 32, 10441046 (2007).
16. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “ Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947949 (2003).
17. J. Kim, F. Kärtner, and F. Ludwig, “ Balanced optical-microwave phase detectors for optoelectronic phase-locked loops,” Opt. Lett. 31, 36593661 (2006).
18. M. Y. Peng, A. Kalaydzhyan, and F. Kärtner, “ Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization,” Opt. Express 22, 2710227111 (2014).
19. M. Y. Peng, P. T. Callahan, A. Nejadmalayeri, S. Valente, M. Xin, L. Grüner-Nielsen, E. Monberg, M. Yan, J. Fini, and F. Kärtner, “ Long-term stable, sub-femtosecond timing distribution via a 1.2-km polarization-maintaining fiber link: Approaching 10−21 link stability,” Opt. Express 21, 1998219989 (2013).
20. K. Safak, M. Xin, M. Y. Peng, P. T. Callahan, and F. X. Kärtner, “ Laser-to-laser remote transfer and synchronization with sub-fs precision over a 3.5 km fiber link,” in Proceedings of the IEEE IFCS2014 (2014), pp. 15.
21. M. Xin, K. Safak, M. Y. Peng, P. T. Callahan, and F. X. Kärtner, “ One-femtosecond, long-term stable remote laser synchronization over a 3.5-km fiber link,” Opt. Express 22, 1490414912 (2014).
22. S. Schulz et al., “ Femtosecond all-optical synchronization of an X-ray free-electron laser,” Nat. Commun. 6, 5938 (2015).
23. C. Sydlo, M. K. Czwalinna, M. Felber, C. Gerth, T. Lamb, H. Schlarb, S. Schulz, F. Zummack, and S. Jablonski, “ Development status of optical synchronization for the European xfel,” in Proceedings of the IBIC2013 (2013).
24. A. H. Nejadmalayeri, F. N. C. Wong, T. D. Roberts, P. Battle, and F. X. Kärtner, “ Guided wave optics in periodically poled KTP: Quadratic nonlinearity and prospects for attosecond jitter characterization,” Opt. Lett. 34(16), 25222524 (2009).
25. P. T. Callahan, K. Safak, P. Battle, T. Roberts, and F. Kärtner, “ Fiber-coupled balanced optical cross-correlator using PPKTP waveguides,” Opt. Express 22, 97499758 (2014).
26. J. Kim, J. Chen, J. Cox, and F. Kärtner, “ Attosecond-resolution timing jitter characterization of free-running mode-locked lasers,” Opt. Lett. 32, 35193521 (2007).
27. F. Loehl, H. Schlarb, J. Müller, J. Kim, J. Chen, F. Wong, and F. X. Kaertner, “ Sub-10 femtosecond stabilization of a fiber-link using a balanced optical cross-correlator,” in Proceedings of the IEEE PAC2007 (2007), pp. 38043806.
28. W. Decking and T. Limberg, “ European XFEL post-TDR description,” Technical Report No. XFEL.EU TN-2013-004-01, Hamburg, 2013.
29. B. Howley, Z. Shi, Y. Jiang, and R. T. Chen, “ Thermally tuned optical fiber for true time delay generation,” Opt. Laser Technol. 37(1), 2932 (2005).
30. A. Barty et al., “ Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements,” Nat. Photonics 6, 3540 (2012).
31. J. M. Glownia et al., “ Time-resolved pump-probe experiments at the LCLS,” Opt. Express 18, 1762017630 (2010).

Data & Media loading...


Article metrics loading...



We report recent progress made in a complete fiber-optic, high-precision, long-term stable timing distribution system for synchronization of next generation X-ray free-electron lasers. Timing jitter characterization of the master laser shows less than 170-as RMS integrated jitter for frequencies above 10 kHz, limited by the detection noise floor. Timing stabilization of a 3.5-km polarization-maintaining fiber link is successfully achieved with an RMS drift of 3.3 fs over 200 h of operation using all fiber-coupled elements. This all fiber-optic implementation will greatly reduce the complexity of optical alignment in timing distribution systems and improve the overall mechanical and timing stability of the system.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd