Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/4/10.1063/1.4922774
1.
1. Abeyrathne, P. D. , Chami, M. , Pantelic, R. S. , Goldie, K. N. , and Stahlberg, H. , Methods Enzymol. 481, 2543 (2010).
http://dx.doi.org/10.1016/S0076-6879(10)81001-8
2.
2. Aquila, A. et al., Opt. Express 20, 27062716 (2012).
http://dx.doi.org/10.1364/OE.20.002706
3.
3. Arnlund, D. et al., Nat. Methods 11, 923926 (2014).
http://dx.doi.org/10.1038/nmeth.3067
4.
4. Becker, R. S. , Photochem. Photobiol. 48, 369399 (1988).
http://dx.doi.org/10.1111/j.1751-1097.1988.tb02836.x
5.
5. Borshchevskiy, V. , Round, E. , Erofeev, I. , Weik, M. , Ishchenko, A. , Gushchin, I. , Mishin, A. , Willbold, D. , Buldt, G. , and Gordeliy, V. , Acta Crystallogr., Sect. D: Biol. Crystallogr. 70, 26752685 (2014).
http://dx.doi.org/10.1107/S1399004714017295
6.
6. Botha, S. , Nass, K. , Barends, T. R. , Kabsch, W. , Latz, B. , Dworkowski, F. , Foucar, L. , Panepucci, E. , Wang, M. , Shoeman, R. L. , Schlichting, I. , and Doak, R. B. , Acta Crystallogr., Sect. D: Biol. Crystallogr. 71, 387397 (2015).
http://dx.doi.org/10.1107/S1399004714026327
7.
7. Bourgeois, D. and Royant, A. , Curr. Opin. Struct. Biol. 15, 538547 (2005).
http://dx.doi.org/10.1016/j.sbi.2005.08.002
8.
8. Boutet, S. et al., Science 337, 362364 (2012).
http://dx.doi.org/10.1126/science.1217737
9.
9. Burg, J. S. , Ingram, J. R. , Venkatakrishnan, A. J. , Jude, K. M. , Dukkipati, A. , Feinberg, E. N. , Angelini, A. , Waghray, D. , Dror, R. O. , Ploegh, H. L. , and Garcia, K. C. , Science 347, 11131117 (2015).
http://dx.doi.org/10.1126/science.aaa5026
10.
10. Chapman, H. N. et al., Nature 470, 7377 (2011).
http://dx.doi.org/10.1038/nature09750
11.
11. Choe, H. W. , Park, J. H. , Kim, Y. J. , and Ernst, O. P. , Neuropharmacology 60, 5257 (2011).
http://dx.doi.org/10.1016/j.neuropharm.2010.07.018
12.
12. Coquelle, N. , Brewster, A. S. , Kapp, U. , Shilova, A. , Weinhausen, B. , Burghammer, M. , and Colletier, J. P. , Acta Crystallogr., Sect. D: Biol. Crystallogr. 71, 11841196 (2015).
http://dx.doi.org/10.1107/S1399004715004514
13.
13. Deupi, X. , Edwards, P. , Singhal, A. , Nickle, B. , Oprian, D. , Schertler, G. , and Standfuss, J. , Proc. Natl. Acad. Sci. U. S. A. 109, 119124 (2012).
http://dx.doi.org/10.1073/pnas.1114089108
14.
14. Ernst, O. P. , Lodowski, D. T. , Elstner, M. , Hegemann, P. , Brown, L. S. , and Kandori, H. , Chem. Rev. 114, 126163 (2014).
http://dx.doi.org/10.1021/cr4003769
15.
15. Fenalti, G. et al., Nat. Struct. Mol. Biol. 22, 265268 (2015).
http://dx.doi.org/10.1038/nsmb.2965
16.
16. Frank, M. et al., IUCrJ 1, 95100 (2014).
http://dx.doi.org/10.1107/S2052252514001444
17.
17. Garman, E. F. and Owen, R. L. , Acta Crystallogr., Sect. D: Biol. Crystallogr. 62, 3247 (2006).
http://dx.doi.org/10.1107/S0907444905034207
18.
18. Goldie, K. N. , Abeyrathne, P. , Kebbel, F. , Chami, M. , Ringler, P. , and Stahlberg, H. , Methods Mol. Biol. 1117, 325341 (2014).
http://dx.doi.org/10.1007/978-1-62703-776-1_15
19.
19. Hegemann, P. and Nagel, G. , EMBO Mol. Med. 5, 173176 (2013).
http://dx.doi.org/10.1002/emmm.201202387
20.
20. Hirata, K. et al., Nat. Methods 11, 734736 (2014).
http://dx.doi.org/10.1038/nmeth.2962
21.
21. Hunter, M. S. et al., Sci. Rep. 4, 6026 (2014).
http://dx.doi.org/10.1038/srep06026
22.
22. Kandori, H. and Maeda, A. , Biochemistry 34, 1422014229 (1995).
http://dx.doi.org/10.1021/bi00043a029
23.
23. Kim, J. E. , Tauber, M. J. , and Mathies, R. A. , Biochemistry 40, 1377413778 (2001).
http://dx.doi.org/10.1021/bi0116137
24.
24. Kim, J. E. , Tauber, M. J. , and Mathies, R. A. , Biophys. J. 84, 24922501 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)75054-1
25.
25. Kissick, D. J. , Wanapun, D. , and Simpson, G. J. , Annu. Rev. Anal. Chem. 4, 419437 (2011).
http://dx.doi.org/10.1146/annurev.anchem.111808.073722
26.
26. Koyama, Y. , Kubo, K. , Komori, M. , Yasuda, H. , and Mukai, Y. , Photochem. Photobiol. 54, 433443 (1991).
http://dx.doi.org/10.1111/j.1751-1097.1991.tb02038.x
27.
27. Kukura, P. , McCamant, D. W. , Yoon, S. , Wandschneider, D. B. , and Mathies, R. A. , Science 310, 10061009 (2005).
http://dx.doi.org/10.1126/science.1118379
28.
28. Kupitz, C. et al., Nature 513, 261265 (2014).
http://dx.doi.org/10.1038/nature13453
29.
29. Li, J. , Edwards, P. C. , Burghammer, M. , Villa, C. , and Schertler, G. F. , J. Mol. Biol. 343, 14091438 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.08.090
30.
30. Liu, W. et al., Science 342, 15211524 (2013).
http://dx.doi.org/10.1126/science.1244142
31.
31. Lorenz-Fonfria, V. A. and Kandori, H. , J. Am. Chem. Soc. 131, 58915901 (2009).
http://dx.doi.org/10.1021/ja900334c
32.
32. Malmerberg, E. , Bovee-Geurts, P. H. M. , Katona, G. , Deupi, X. , Arnlund, D. , Wickstrand, C. , Johansson, L. C. , Westenhoff, S. , Nazarenko, E. , Schertler, G. F. X. , Menzel, A. , de Grip, W. J. , and Neutze, R. , Sci. Signaling 8, ra26 (2015).
http://dx.doi.org/10.1126/scisignal.2005646
33.
33. McMullan, G. , Faruqi, A. R. , Clare, D. , and Henderson, R. , Ultramicroscopy 147, 156163 (2014).
http://dx.doi.org/10.1016/j.ultramic.2014.08.002
34.
34. Mourot, A. , Tochitsky, I. , and Kramer, R. H. , Front. Mol. Neurosci. 6, 5 (2013).
http://dx.doi.org/10.3389/fnmol.2013.00005
35.
35. Nakamichi, H. and Okada, T. , Angew. Chem., Int. Ed. Engl. 45, 42704273 (2006a).
http://dx.doi.org/10.1002/anie.200600595
36.
36. Nakamichi, H. and Okada, T. , Proc. Natl. Acad. Sci. U. S. A. 103, 1272912734 (2006b).
http://dx.doi.org/10.1073/pnas.0601765103
37.
37. Neutze, R. , Wouts, R. , van der Spoel, D. , Weckert, E. , and Hajdu, J. , Nature 406, 752757 (2000).
http://dx.doi.org/10.1038/35021099
38.
38. Nogly, P. et al., IUCrJ 2, 168176 (2015).
http://dx.doi.org/10.1107/S2052252514026487
39.
39. Okada, T. , Sugihara, M. , Bondar, A. N. , Elstner, M. , Entel, P. , and Buss, V. , J. Mol. Biol. 342, 571583 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.07.044
40.
40. Palczewski, K. , Kumasaka, T. , Hori, T. , Behnke, C. A. , Motoshima, H. , Fox, B. A. , Le Trong, I. , Teller, D. C. , Okada, T. , Stenkamp, R. E. , Yamamoto, M. , and Miyano, M. , Science 289, 739745 (2000).
http://dx.doi.org/10.1126/science.289.5480.739
41.
41. Park, J. H. , Morizumi, T. , Li, Y. , Hong, J. E. , Pai, E. F. , Hofmann, K. P. , Choe, H. W. , and Ernst, O. P. , Angew. Chem., Int. Ed. Engl. 52, 1102111024 (2013).
http://dx.doi.org/10.1002/anie.201302374
42.
42. Park, J. H. , Scheerer, P. , Hofmann, K. P. , Choe, H. W. , and Ernst, O. P. , Nature 454, 183187 (2008).
http://dx.doi.org/10.1038/nature07063
43.
43. Pedrini, B. et al., Philos. Trans. R. Soc. London, Ser. B 369, 20130500 (2014).
http://dx.doi.org/10.1098/rstb.2013.0500
44.
44. Perry, S. L. , Guha, S. , Pawate, A. S. , Henning, R. , Kosheleva, I. , Srajer, V. , Kenis, P. J. , and Ren, Z. , J. Appl. Crystallogr. 47, 19751982 (2014).
http://dx.doi.org/10.1107/S1600576714023322
45.
45. Rigaud, J. , Chami, M. , Lambert, O. , Levy, D. , and Ranck, J. , Biochim. Biophys. Acta 1508, 112128 (2000).
http://dx.doi.org/10.1016/S0005-2736(00)00307-2
46.
46. Rullo, A. , Reiner, A. , Reiter, A. , Trauner, D. , Isacoff, E. Y. , and Woolley, G. A. , Chem. Commun. 50, 1461314615 (2014).
http://dx.doi.org/10.1039/C4CC06612J
47.
47. Scheerer, P. , Park, J. H. , Hildebrand, P. W. , Kim, Y. J. , Krauss, N. , Choe, H. W. , Hofmann, K. P. , and Ernst, O. P. , Nature 455, 497502 (2008).
http://dx.doi.org/10.1038/nature07330
48.
48. Schertler, G. F. , Curr. Opin. Struct. Biol. 15, 408415 (2005).
http://dx.doi.org/10.1016/j.sbi.2005.07.010
49.
49. Schertler, G. F. , Villa, C. , and Henderson, R. , Nature 362, 770772 (1993).
http://dx.doi.org/10.1038/362770a0
50.
50. Schoenlein, R. W. , Peteanu, L. A. , Mathies, R. A. , and Shank, C. V. , Science 254, 412415 (1991).
http://dx.doi.org/10.1126/science.1925597
51.
51. Schotte, F. , Soman, J. , Olson, J. S. , Wulff, M. , and Anfinrud, P. A. , J. Struct. Biol. 147, 235246 (2004).
http://dx.doi.org/10.1016/j.jsb.2004.06.009
52.
52. Shapiro, D. A. , Chapman, H. N. , Deponte, D. , Doak, R. B. , Fromme, P. , Hembree, G. , Hunter, M. , Marchesini, S. , Schmidt, K. , Spence, J. , Starodub, D. , and Weierstall, U. , J. Synchrotron Radiat. 15, 593599 (2008).
http://dx.doi.org/10.1107/S0909049508024151
53.
53. Sierra, R. G. et al., Acta Crystallogr., Sect. D: Biol. Crystallogr. 68, 15841587 (2012).
http://dx.doi.org/10.1107/S0907444912038152
54.
54. Singhal, A. , Ostermaier, M. K. , Vishnivetskiy, S. A. , Panneels, V. , Homan, K. T. , Tesmer, J. J. , Veprintsev, D. , Deupi, X. , Gurevich, V. V. , Schertler, G. F. , and Standfuss, J. , EMBO Rep. 14, 520526 (2013).
http://dx.doi.org/10.1038/embor.2013.44
55.
55. Standfuss, J. , Edwards, P. C. , D'Antona, A. , Fransen, M. , Xie, G. , Oprian, D. D. , and Schertler, G. F. , Nature 471, 656660 (2011).
http://dx.doi.org/10.1038/nature09795
56.
56. Standfuss, J. , Xie, G. , Edwards, P. C. , Burghammer, M. , Oprian, D. D. , and Schertler, G. F. , J. Mol. Biol. 372, 11791188 (2007).
http://dx.doi.org/10.1016/j.jmb.2007.03.007
57.
57. Suga, M. , Akita, F. , Hirata, K. , Ueno, G. , Murakami, H. , Nakajima, Y. , Shimizu, T. , Yamashita, K. , Yamamoto, M. , Ago, H. , and Shen, J. R. , Nature 517, 99103 (2015).
http://dx.doi.org/10.1038/nature13991
58.
58. Sugahara, M. et al., Nat. Methods 12, 6163 (2015).
http://dx.doi.org/10.1038/nmeth.3172
59.
59. Tenboer, J. et al., Science 346, 12421246 (2014).
http://dx.doi.org/10.1126/science.1259357
60.
60. Weierstall, U. et al., Nat. Commun. 5, 3309 (2014).
http://dx.doi.org/10.1038/ncomms4309
61.
61. Weierstall, U. , Spence, J. C. , and Doak, R. B. , Rev. Sci. Instrum. 83, 035108 (2012).
http://dx.doi.org/10.1063/1.3693040
62.
62. Wu, W. , Nogly, P. , Rheinberger, J. , Kick, L. M. , Gati, C. , Nelson, G. , Deupi, X. , Standfuss, J. , Schertler, G. , and Panneels, V. , “ Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser,” Acta Crystallogr. F Struct. Biol. Commun. (in press).
63.
63. Zarrine–Afsar, A. , Barends, T. R. , Muller, C. , Fuchs, M. R. , Lomb, L. , Schlichting, I. , and Miller, R. J. , Acta Crystallogr., Sect. D: Biol. Crystallogr. 68, 321323 (2012).
http://dx.doi.org/10.1107/S0907444911055296
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/4/10.1063/1.4922774
Loading
/content/aca/journal/sdy/2/4/10.1063/1.4922774
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/4/10.1063/1.4922774
2015-06-29
2016-12-10

Abstract

Structural information of the different conformational states of the two prototypical light-sensitive membrane proteins, bacteriorhodopsin and rhodopsin, has been obtained in the past by X-ray cryo-crystallography and cryo-electron microscopy. However, these methods do not allow for the structure determination of most intermediate conformations. Recently, the potential of X-Ray Free Electron Lasers (X-FELs) for tracking the dynamics of light-triggered processes by pump-probe serial femtosecond crystallography has been demonstrated using 3D-micron-sized crystals. In addition, X-FELs provide new opportunities for protein 2D-crystal diffraction, which would allow to observe the course of conformational changes of membrane proteins in a close-to-physiological lipid bilayer environment. Here, we describe the strategies towards structural dynamic studies of retinal proteins at room temperature, using injector or fixed-target based serial femtosecond crystallography at X-FELs. Thanks to recent progress especially in sample delivery methods, serial crystallography is now also feasible at synchrotron X-ray sources, thus expanding the possibilities for time-resolved structure determination.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/4/1.4922774.html;jsessionid=9xBA89RwTZpc43gAUjSup3ZH.x-aip-live-06?itemId=/content/aca/journal/sdy/2/4/10.1063/1.4922774&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/4/10.1063/1.4922774&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/4/10.1063/1.4922774'
Right1,Right2,Right3,