Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/4/10.1063/1.4928688
1.
1. H. N. Chapman , P. Fromme , A. Barty , T. A. White , R. A. Kirian , A. Aquila et al., “ Femtosecond X-ray protein nanocrystallography,” Nature 470(7332), 73 (2011).
http://dx.doi.org/10.1038/nature09750
2.
2. A. Aquila , M. S. Hunter , R. B. Doak , R. A. Kirian , P. Fromme , T. A. White et al., “ Time-resolved protein nanocrystallography using an X-ray free-electron laser,” Opt. Express 20(3), 2706 (2012).
http://dx.doi.org/10.1364/OE.20.002706
3.
3. J. C. H. Spence , U. Weierstall , and H. N. Chapman , “ X-ray lasers for structural and dynamic biology,” Rep. Prog. Phys. 75(10), 102601 (2012).
http://dx.doi.org/10.1088/0034-4885/75/10/102601
4.
4. P. Fromme and H. T. Witt , “ Improved isolation and crystallization of photosystem I for structural analysis,” Biochim. Biophys. Acta, Bioenerg. 1365(1–2), 175 (1998).
http://dx.doi.org/10.1016/S0005-2728(98)00059-0
5.
5. P. Fromme and I. Grotjohann , “ Crystallization of photosynthetic membrane proteins,” Curr. Top. Membr. 63, 191 (2009).
http://dx.doi.org/10.1016/S1063-5823(09)63009-X
6.
6. P. Fromme and J. C. H. Spence , “ Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination,” Curr. Opin. Struct. Biol. 21(4), 509 (2011).
http://dx.doi.org/10.1016/j.sbi.2011.06.001
7.
7. R. Neutze , R. Wouts , D. van der Spoel , E. Weckert , and J. Hajdu , “ Potential for biomolecular imaging with femtosecond X-ray pulses,” Nature 406(6797), 752 (2000).
http://dx.doi.org/10.1038/35021099
8.
8. M. S. Hunter and P. Fromme , “ Toward structure determination using membrane-protein nanocrystals and microcrystals,” Methods 55(4), 387 (2011).
http://dx.doi.org/10.1016/j.ymeth.2011.12.006
9.
9. M. S. Hunter , D. P. DePonte , D. A. Shapiro , R. A. Kirian , X. Wang , D. Starodub et al., “ X-ray diffraction from membrane protein nanocrystals,” Biophys. J. 100(1), 198 (2011).
http://dx.doi.org/10.1016/j.bpj.2010.10.049
10.
10. L. C. Johansson , D. Arnlund , G. Katona , T. A. White , A. Barty , D. P. DePonte et al., “ Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography,” Nat. Commun. 4, 2911 (2013).
http://dx.doi.org/10.1038/ncomms3911
11.
11. W. Liu , D. Wacker , C. Gati , G. W. Han , D. James , D. Wang et al., “ Serial femtosecond crystallography of G protein-coupled receptors,” Science 342(6165), 1521 (2013).
http://dx.doi.org/10.1126/science.1244142
12.
12. H. Zhang , H. Unal , C. Gati , G. Won Han , W. Liu , N. A. Zatsepin et al., “ Structure of the angiotensin receptor revealed by serial femtosecond crystallography,” Cell 161(4), 833 (2015).
http://dx.doi.org/10.1016/j.cell.2015.04.011
13.
13. C. Kupitz , S. Basu , I. Grotjohann , R. Fromme , N. A. Zatsepin , K. N. Rendek et al., “ Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser,” Nature 513(7517), 261 (2014).
http://dx.doi.org/10.1038/nature13453
14.
14. M. M. Seibert , T. Ekeberg , F. R. Maia , M. Svenda , J. Andreasson , O. Jonsson et al., “ Single mimivirus particles intercepted and imaged with an X-ray laser,” Nature 470(7332), 78 (2011).
http://dx.doi.org/10.1038/nature09748
15.
15. A. Hosseinizadeh , P. Schwander , A. Dashti , R. Fung , R. M. D'Souza , and A. Ourmazd , “ High-resolution structure of viruses from random diffraction snapshots,” Philos. Trans. R. Soc., B 369(1647), 20130326 (2014).
http://dx.doi.org/10.1098/rstb.2013.0326
16.
16. H. H. Lee , I. Cherni , H. Yu , R. Fromme , J. D. Doran , I. Grotjohann et al., “ Expression, purification and crystallization of CTB-MPR, a candidate mucosal vaccine component against HIV-1,” IUCrJ 1(Pt 5), 305 (2014).
http://dx.doi.org/10.1107/S2052252514014900
17.
17. D. Sayre , “ Some implications of a theorem due to Shannon,” Acta Crystallogr. 5(6), 843 (1952).
http://dx.doi.org/10.1107/S0365110X52002276
18.
18. J. C. H. Spence , R. A. Kirian , X. Wang , U. Weierstall , K. E. Schmidt , T. White et al., “ Phasing of coherent femtosecond X-ray diffraction from size-varying nanocrystals,” Opt. Express 19(4), 2866 (2011).
http://dx.doi.org/10.1364/OE.19.002866
19.
19. R. A. Kirian , R. J. Bean , K. R. Beyerlein , O. M. Yefanov , T. A. White , A. Barty et al., “ Phasing coherently illuminated nanocrystals bounded by partial unit cells,” Philos. Trans. R. Soc., B 369(1647), 20130331 (2014).
http://dx.doi.org/10.1098/rstb.2013.0331
20.
20. R. A. Kirian , R. J. Bean , K. R. Beyerlein , M. Barthelmess , C. H. Yoon , F. Wang et al., “ Direct phasing of finite crystals illuminated with a free-electron laser,” Phys. Rev. X 5(1), 011015 (2015).
http://dx.doi.org/10.1103/PhysRevX.5.011015
21.
21. R. A. Kirian , T. A. White , J. M. Holton , H. N. Chapman , P. Fromme , A. Barty et al., “ Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals,” Acta Crystallogr., Sect. A: Found. Crystallogr. 67(Pt. 2), 131 (2011).
http://dx.doi.org/10.1107/S0108767310050981
22.
22. B. G. Abdallah , C. Kupitz , P. Fromme , and A. Ros , “ Crystallization of the large membrane protein complex photosystem I in a microfluidic channel,” ACS Nano 7(12), 10534 (2013).
http://dx.doi.org/10.1021/nn402515q
23.
23. B. G. Abdallah , T. C. Chao , C. Kupitz , P. Fromme , and A. Ros , “ Dielectrophoretic sorting of membrane protein nanocrystals,” ACS Nano 7(10), 9129 (2013).
http://dx.doi.org/10.1021/nn403760q
24.
24. H. A. Pohl , “ Biophysical aspects of dielectrophoresis,” J. Biol. Phys. 1(1), 1 (1973).
http://dx.doi.org/10.1007/BF02308961
25.
25. H. A. Pohl , Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields ( Cambridge University Press, Cambridge/New York, 1978).
26.
26. S. K. Srivastava , J. Baylon-Cardiel , B. Lapizco-Encinas , and A. R. Minerick , “ A continuous DC-insulator dielectrophoretic sorter of microparticles,” J. Chromatogr. A 1218(13), 1780 (2011).
http://dx.doi.org/10.1016/j.chroma.2011.01.082
27.
27. S. K. Srivastava , A. Artemiou , and A. R. Minerick , “ Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing,” Electrophoresis 32(18), 2530 (2011).
http://dx.doi.org/10.1002/elps.201100089
28.
28. J. Luo , B. G. Abdallah , G. G. Wolken , E. A. Arriaga , and A. Ros , “ Insulator-based dielectrophoresis of mitochondria,” Biomicrofluidics 8(2), 021801 (2014).
http://dx.doi.org/10.1063/1.4866852
29.
29. E. B. Cummings and A. K. Singh , “ Dielectrophoretic trapping without embedded electrodes,” Proc. SPIE 4177, 151 (2000).
http://dx.doi.org/10.1117/12.395653
30.
30. S. Bhattacharya , T. C. Chao , and A. Ros , “ Insulator-based dielectrophoretic single particle and single cancer cell trapping,” Electrophoresis 32(18), 2550 (2011).
http://dx.doi.org/10.1002/elps.201100066
31.
31. L. Gan , T. C. Chao , F. Camacho-Alanis , and A. Ros , “ Six-helix bundle and triangle DNA origami insulator-based dielectrophoresis,” Anal. Chem. 85(23), 11427 (2013).
http://dx.doi.org/10.1021/ac402493u
32.
32. S. Bhattacharya , T. C. Chao , N. Ariyasinghe , Y. Ruiz , D. Lake , R. Ros et al., “ Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis,” Anal. Bioanal. Chem. 406(7), 1855 (2014).
http://dx.doi.org/10.1007/s00216-013-7598-2
33.
33. B. Lapizco-Encinas , B. A. Simmons , E. B. Cummings , and Y. Fintschenko , “ Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators,” Anal. Chem. 76(6), 1571 (2004).
http://dx.doi.org/10.1021/ac034804j
34.
34. A. Nakano , F. Camacho-Alanis , T. C. Chao , and A. Ros , “ Tuning direct current streaming dielectrophoresis of proteins,” Biomicrofluidics 6(3), 34108 (2012).
http://dx.doi.org/10.1063/1.4742695
35.
35. A. Nakano and A. Ros , “ Protein dielectrophoresis: advances, challenges, and applications,” Electrophoresis 34(7), 1085 (2013).
http://dx.doi.org/10.1002/elps.201200482
36.
36. T. B. Jones , Electromechanics of Particles ( Cambridge University Press, Cambridge/New York, 1995).
37.
37. R. Pethig , “ Review article-dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
http://dx.doi.org/10.1063/1.3456626
38.
38. M. Li , W. H. Li , J. Zhang , G. Alici , and W. Wen , “ A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation,” J. Phys. D: Appl. Phys. 47(6), 063001 (2014).
http://dx.doi.org/10.1088/0022-3727/47/6/063001
39.
39. D. P. DePonte , U. Weierstall , K. Schmidt , J. Warner , D. Starodub , J. C. H. Spence et al., “ Gas dynamic virtual nozzle for generation of microscopic droplet streams,” J. Phys. D: Appl. Phys. 41(19), 195505 (2008).
http://dx.doi.org/10.1088/0022-3727/41/19/195505
40.
40. U. Weierstall , “ Liquid sample delivery techniques for serial femtosecond crystallography,” Philos. Trans. R. Soc., B 369(1647), 20130337 (2014).
http://dx.doi.org/10.1098/rstb.2013.0337
41.
41. D. C. Duffy , J. C. McDonald , O. J. A. Schueller , and G. M. Whitesides , “ Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974 (1998).
http://dx.doi.org/10.1021/ac980656z
42.
42. S. K. Sia and G. M. Whitesides , “ Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563 (2003).
http://dx.doi.org/10.1002/elps.200305584
43.
43. H. P. Stevenson , A. M. Makhov , M. Calero , A. L. Edwards , O. B. Zeldin , I. I. Mathews et al., “ Use of transmission electron microscopy to identify nanocrystals of challenging protein targets,” Proc. Natl. Acad. Sci. U. S. A. 111(23), 8470 (2014).
http://dx.doi.org/10.1073/pnas.1400240111
44.
44. P. Hart , S. Boutet , G. Carini , M. Dubrovin , B. Duda , D. Fritz et al., “ The CSPAD megapixel X-ray camera at LCLS,” Proc. SPIE 8504, 85040C (2012).
http://dx.doi.org/10.1117/12.930924
45.
45. V. Filipe , A. Hawe , and W. Jiskoot , “ Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates,” Pharm. Res. 27(5), 796 (2010).
http://dx.doi.org/10.1007/s11095-010-0073-2
46.
46. R. D. Wampler , D. J. Kissick , C. J. Dehen , E. J. Gualtieri , J. L. Grey , H. F. Wang et al., “ Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076 (2008).
http://dx.doi.org/10.1021/ja805983b
47.
47. D. J. Kissick , D. Wanapun , and G. J. Simpson , “ Second-order nonlinear optical imaging of chiral crystals,” Annu. Rev. Anal. Chem. 4, 419 (2011).
http://dx.doi.org/10.1146/annurev.anchem.111808.073722
48.
48. T. J. Boggon , J. R. Helliwell , R. A. Judge , A. Olczak , D. P. Siddons , E. H. Snell et al., “ Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 56(Pt 7), 868 (2000).
http://dx.doi.org/10.1107/S0907444900005837
49.
49. E. H. Snell , H. D. Bellamy , and G. E. O. Borgstahl , “ Macromolecular crystal quality,” Methods Enzymol. 368, 268 (2003).
http://dx.doi.org/10.1016/S0076-6879(03)68015-8
50.
50. S. K. Son , H. N. Chapman , and R. Santra , “ Multiwavelength anomalous diffraction at high x-ray intensity,” Phys. Rev. Lett. 107(21), 218102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.218102
51.
51. L. Galli , S. Son , T. A. White , R. Santra , H. N. Chapman , and M. H. Nanao , “ Towards RIP using free-electron laser SFX data,” J. Synchrotron Radiat. 22(Pt 2), 249 (2015).
http://dx.doi.org/10.1107/S1600577514027854
52.
52. T. A. White , R. A. Kirian , A. V. Martin , A. Aquila , K. Nass , A. Barty et al., “ CrystFEL: A software suite for snapshot serial crystallography,” J. Appl. Crystallogr. 45(2), 335 (2012).
http://dx.doi.org/10.1107/S0021889812002312
53.
53. S. Boutet , Linac Coherent Light Source, SLAC National Accelerator Laboratory, personal communication (2015).
54.
54. P. Jordan , P. Fromme , H. T. Witt , O. Klukas , W. Saenger , and N. Krauss , “ Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution,” Nature 411(6840), 909 (2001).
http://dx.doi.org/10.1038/35082000
55.
55. L. F. Ten Eyck , “ Efficient structure-factor calculation for large molecules by the fast Fourier transform,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 33(3), 486 (1977).
http://dx.doi.org/10.1107/S0567739477001211
56.
56. M. D. Winn , C. C. Ballard , K. D. Cowtan , E. J. Dodson , P. Emsley , P. R. Evans et al., “ Overview of the CCP4 suite and current developments,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 67(4), 235 (2011).
http://dx.doi.org/10.1107/S0907444910045749
57.
57. P. A. Karplus and K. Diederichs , “ Linking crystallographic model and data quality,” Science 336(6084), 1030 (2012).
http://dx.doi.org/10.1126/science.1218231
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/4/10.1063/1.4928688
Loading
/content/aca/journal/sdy/2/4/10.1063/1.4928688
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/4/10.1063/1.4928688
2015-08-19
2016-12-06

Abstract

The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ∼4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. This method will also permit an analysis of the dependence of crystal quality on crystal size.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/4/1.4928688.html;jsessionid=OgyJ-HOBu2Swp-jQnpJsV5Pm.x-aip-live-03?itemId=/content/aca/journal/sdy/2/4/10.1063/1.4928688&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/4/10.1063/1.4928688&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/4/10.1063/1.4928688'
Right1,Right2,Right3,