Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Hase, M. Kitajima, A. M. Constantinescu, and H. Petek, “ The birth of a quasiparticle in silicon observed in time-frequency space,” Nature 426, 51 (2003).
2. C. V. Shank, R. Yen, and C. Hirlimann, “ Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50, 454 (1983).
3. H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz, “ Time-resolved study of laser-induced disorder of Si surfaces,” Phys. Rev. Lett. 60, 1438 (1988).
4. P. Stampfli and K. H. Bennemann, “ Dynamical theory of the laser-induced lattice instability of silicon,” Phys. Rev. B 46, 10686 (1992).
5. E. S. Zijlstra, A. Kalitsov, T. Zier, and M. E. Garcia, “ Fractional diffusion in silicon,” Adv. Mater. 25, 5605 (2013).
6. C. V. Shank, R. Yen, and C. Hirlimann, “ Femtosecond-time-resolved surface structural dynamics of optically excited silicon,” Phys. Rev. Lett. 51, 900 (1983).
7. Z. Lin and L. V. Zhigilei, “ Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
8. V. Recoules, J. Clérouin, G. Zérah, P. M. Anglade, and S. Mazevet, “ Effect of intense laser irradiation on the lattice stability of semiconductors and metals,” Phys. Rev. Lett. 96, 055503 (2006).
9. Y. Rosandi, F. C. Kabeer, Y. Cherednikov, E. S. Zijlstra, M. E. Garcia, N. A. Inogamov, and H. M. Urbassek, “ Melting of Al induced by laser excitation of 2p holes,” Mater. Res. Lett. 3, 149 (2015).
10. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “ An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382 (2003).
11. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. I. Anisimov, “ Ultrafast thermal melting of laser-excited solids by homogeneous nucleation,” Phys. Rev. B 65, 092103 (2002).
12. T. Sjodin, H. Petek, and H.-L. Dai, “ Ultrafast carrier dynamics in silicon: A two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett. 81, 5664 (1998).
13. M. Harb, R. Ernstorfer, T. Dartigalongue, C. T. Hebeisen, R. E. Jordan, and R. J. D. Miller, “ Carrier relaxation and lattice heating dynamics in silicon revealed by femtosecond electron diffraction,” J. Phys. Chem. B 110, 25308 (2006).
14. E. J. Yoffa, “ Screening of hot-carrier relaxation in highly photoexcited semiconductors,” Phys. Rev. B 23, 1909 (1981).
15. J. K. Chen, D. Y. Tzou, and J. E. Beraun, “ Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501 (2005). Data listed in this paper are used in many classical molecular-dynamics simulations of Si after ultrashort laser excitation. Note, however, that in Table 1 a square is mistakably missing in the expression for τe.
16. M. Beye, F. Sorgenfrei, W. F. Schlotter, W. Wurth, and A. Föhlisch, “ The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons,” Proc. Natl. Acad. Sci. U. S. A. 107, 16772 (2010).
17. A. Gambirasio, M. Bernasconi, and L. Colombo, “ Laser-induced melting of silicon: A tight-binding molecular dynamics simulation,” Phys. Rev. B 61, 8233 (2000).
18. M. Harb, R. Ernstorfer, C. T. Hebeisen, G. Sciaini, W. Peng, T. Dartigalongue, M. A. Eriksson, M. G. Lagally, S. G. Kruglik, and R. J. D. Miller, “ Electronically driven structure changes of Si captured by femtosecond electron diffraction,” Phys. Rev. Lett. 100, 155504 (2008).
19. J. A. Van Vechten and R. Tsu, “ Nonthermal pulsed laser annealing of Si; plasma annealing,” Phys. Lett. A 74, 422 (1979).
20. H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “ Laser ablation thresholds of silicon for different pulse durations: Theory and experiment,” Appl. Surf. Sci. 197–198, 839 (2002).
21. P. L. Silvestrelli, A. Alavi, M. Parrinello, and D. Frenkel, “ Ab initio molecular dynamics simulation of laser melting of silicon,” Phys. Rev. Lett. 77, 3149 (1996).
22. E. S. Zijlstra, A. Kalitsov, T. Zier, and M. E. Garcia, “ Squeezed thermal phonons precurse nonthermal melting of silicon as a function of fluence,” Phys. Rev. X 3, 011005 (2013).
23. T. Zier, E. S. Zijlstra, and M. E. Garcia, “ Silicon before the bonds break,” Appl. Phys. A 117, 1 (2014).
24. E. S. Zijlstra, T. Zier, B. Bauerhenne, S. Krylow, P. M. Geiger, and M. E. Garcia, “ Femtosecond-laser-induced bond breaking and structural modifications in silicon, TiO2, and defective graphene: An ab initio molecular dynamics study,” Appl. Phys. A 114, 1 (2014).
25. N. D. Mermin, “ Thermal properties of the inhomogeneous electron gas,” Phys. Rev. 137, A1441 (1965).
26.See for true random numbers.
27. J. M. Holender and G. J. Morgan, “ Molecular dynamics simulations of a large structure of amorphous Si and direct calculations of the structure factor,” J. Phys.: Condens. Matter 3, 1947 (1991).
28. P. Debye, “ Interferenz von Röntgenstrahlen und Wärmebewegung,” Ann. Phys. 348, 49 (1913).
29. I. Waller, “ Zur Frage der Einwirkung der Wärmebewegung auf die Interferenz von Röntgenstrahlen,” Z. Phys. 17, 398 (1923).
30. C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, and A. Antonetti, “ Femtosecond time-resolved x-ray diffraction from laser-heated organic films,” Nature 390, 490 (1997).
31. E. W. Draeger and D. M. Ceperley, “ Debye-Waller factor of solid 3He and 4He,” Phys. Rev. B 61, 12094 (2000).
32. A. M. Lindenberg et al., “ Atomic-scale visualization of inertial dynamics,” Science 308, 392 (2005).
33. Z. Lin and L. V. Zhigilei, “ Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: Molecular dynamics study,” Phys. Rev. B 73, 184113 (2006).
34. I. Klett, T. Zier, B. Rethfeld, M. E. Garcia, and E. S. Zijlstra, “ Isostructural elemental crystals in the presence of hot carriers,” Phys. Rev. B 91, 144303 (2015).
35. G. Sciaini, private communication (2015).
36. K. Lu and Y. Li, “ Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal,” Phys. Rev. Lett. 80, 4474 (1998).
37. Z. H. Jin, P. Gumbsch, K. Lu, and E. Ma, “ Melting mechanisms at the limit of superheating,” Phys. Rev. Lett. 87, 055703 (2001).

Data & Media loading...


Article metrics loading...



Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd