Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. J. D. Miller, “ Energetics and dynamics of deterministic protein motion,” Acc. Chem. Res. 27, 145150 (1994).
2. R. J. D. Miller, “ Mapping atomic motions with ultrabright electrons: The chemists’ Gedanken experiment enters the lab frame,” Annu. Rev. Phys. Chem. 65, 583604 (2014).
3. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “ Potential for biomolecular imaging with femtosecond x-ray pulses,” Nature 406, 752757 (2000).
4. A. Barty, J. Küpper, and H. N. Chapman, “ Molecular imaging using x-ray free-electron lasers,” Annu. Rev. Phys. Chem. 64, 415435 (2013).
5. L. Young, E. P. Kanter, B. Krässig, Y. Li, A. M. March et al., “ Femtosecond electronic response of atoms to ultra-intense x-rays,” Nature 466, 5661 (2010).
6. H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian et al., “ Femtosecond x-ray protein nanocrystallography,” Nature 470, 7377 (2011).
7. V. Marx, “ Structural biology: ‘Seeing’ crystals the XFEL way,” Nat. Methods 11, 903908 (2014).
8. M. Cammarata, M. Levantino, F. Schotte, P. A. Anfinrud, F. Ewald et al., “ Tracking the structural dynamics of proteins in solution using time-resolved wide-angle x-ray scattering,” Nat. Methods 5, 881887 (2008).
9. F. Schotte, M. Lim, T. A. Jackson, A. V. Smirnov, J. Soman et al., “ Watching a protein as it functions with 150-ps time-resolved x-ray crystallography,” Science 300, 19441947 (2003).
10. S. Boutet, L. Lomb, G. J. Williams, T. R. M. Barends, A. Aquila et al., “ High-resolution protein structure determination by serial femtosecond crystallography,” Science 337, 362365 (2012).
11. J. Tenboer, S. Basu, N. Zatsepin, K. Pande, D. Milathianaki et al., “ Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein,” Science 346, 1242 (2014).
12. F. Schotte, H. Sun, V. R. I. Kaila, H. Kamikubo, N. Dashdorj et al., “ Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography,” Proc. Natl. Acad. Sci. U. S. A. 109, 1925619261 (2012).
13. C. Mueller, Ph.D thesis, University of Toronto, 2014.
14. A. Zarrine-Afsar, T. R. M. Barends, C. Müller, M. R. Fuchs, L. Lomb et al., “ Crystallography on a chip,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 68, 321323 (2012).
15. A. Le Maire, M. Gelin, S. Pochet, F. Hoh, M. Pirocchi et al., “ In-plate protein crystallization, in situ ligand soaking and x-ray diffraction,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 67, 747755 (2011).
16. G. Winter and K. E. McAuley, “ Automated data collection for macromolecular crystallography,” Methods 55, 8193 (2011).
17. J. Foadi, P. Aller, Y. Alguel, A. Cameron, D. Axford et al., “ Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 69, 16171632 (2013).
18. P. Coppens, M. Pitak, M. Gembicky, M. Messerschmidt, S. Scheins et al., “ The RATIO method for time-resolved Laue crystallography,” J. Synchrotron Radiat. 16, 226230 (2009).
19. W. Brehm and K. Diederichs, “ Breaking the indexing ambiguity in serial crystallography,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 70, 101109 (2014).
20. T. E. Carver, R. E. Brantley, E. W. Singleton, R. M. Arduini, M. L. Quillin et al., “ A novel site-directed mutant of myoglobin with an unusually high O2 affinity and low autooxidation rate,” J. Biol. Chem. 267, 1444314450 (1992).
21. D. P. DePonte, U. Weierstall, K. Schmidt, J. Warner, D. Starodub et al., “ Gas dynamic virtual nozzle for generation of microscopic droplet streams,” J. Phys. D: Appl. Phys. 41, 195505 (2008).
22. C. Kupitz, S. Basu, I. Grotjohann, R. Fromme, N. A. Zatsepin et al., “ Serial time-resolved crystallography of photosystem II using a femtosecond x-ray laser,” Nature 513, 261265 (2014).
23. J. Hattne, N. Echols, R. Tran, J. Kern, R. J. Gildea et al., “ Accurate macromolecular structures using minimal measurements from x-ray free-electron lasers,” Nat. Methods 11, 545548 (2014).
24. B. A. Springer and S. G. Sligar, “ High-level expression of sperm whale myoglobin in Escherichia coli,” Proc. Natl. Acad. Sci. U. S. A. 84, 89618965 (1987).
25. K. D. Egeberg, B. A. Springer, S. G. Sligar, T. E. Carver, R. J. Rohlfs, and J. S. Olson, “ The role of Val68(E11) in ligand binding to sperm whale myoglobin. Site-directed mutagenesis of a synthetic gene,” J. Biol. Chem. 265, 1178811795 (1990).
26. G. N. Phillips, R. M. Arduini, B. A. Springer, and S. G. Sligar, “ Crystal structure of myoglobin from a synthetic gene,” Proteins: Struct., Funct., Genet. 7, 358365 (1990).
27. A. Zarrine-Afsar, C. Müller, F. O. Talbot, and R. J. D. Miller, “ Self-localizing stabilized mega-pixel picoliter arrays with size-exclusion sorting capabilities,” Anal. Chem. 83, 767773 (2011).
28. M. Harmand, R. Coffee, M. R. Bionta, M. Chollet, D. French et al., “ Achieving few-femtosecond time-sorting at hard x-ray free-electron lasers,” Nat. Photonics 7, 215218 (2013).
29. G. Winter, “ Xia2: An expert system for macromolecular crystallography data reduction,” J. Appl. Crystallogr. 43, 186190 (2010).
30. M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., “ Overview of the CCP4 suite and current developments,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 67, 235242 (2011).
31. W. Kabsch, “ XDS,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 125132 (2010).
32. P. Evans, “ Scaling and assessment of data quality,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 62, 7282 (2006).
33.R Core Team, “ R: A language and environment for statistical computing,” R Foundation for Statistical Computing, Vienna, Austria 2014, see
34. P. Roedig et al., Sci. Rep. 5, 10451 (2015).

Data & Media loading...


Article metrics loading...



We present a crystallography chip enabling room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd