Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/5/10.1063/1.4928706
1.
1. R. J. D. Miller, “ Energetics and dynamics of deterministic protein motion,” Acc. Chem. Res. 27, 145150 (1994).
http://dx.doi.org/10.1021/ar00041a005
2.
2. R. J. D. Miller, “ Mapping atomic motions with ultrabright electrons: The chemists’ Gedanken experiment enters the lab frame,” Annu. Rev. Phys. Chem. 65, 583604 (2014).
http://dx.doi.org/10.1146/annurev-physchem-040412-110117
3.
3. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “ Potential for biomolecular imaging with femtosecond x-ray pulses,” Nature 406, 752757 (2000).
http://dx.doi.org/10.1038/35021099
4.
4. A. Barty, J. Küpper, and H. N. Chapman, “ Molecular imaging using x-ray free-electron lasers,” Annu. Rev. Phys. Chem. 64, 415435 (2013).
http://dx.doi.org/10.1146/annurev-physchem-032511-143708
5.
5. L. Young, E. P. Kanter, B. Krässig, Y. Li, A. M. March et al., “ Femtosecond electronic response of atoms to ultra-intense x-rays,” Nature 466, 5661 (2010).
http://dx.doi.org/10.1038/nature09177
6.
6. H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian et al., “ Femtosecond x-ray protein nanocrystallography,” Nature 470, 7377 (2011).
http://dx.doi.org/10.1038/nature09750
7.
7. V. Marx, “ Structural biology: ‘Seeing’ crystals the XFEL way,” Nat. Methods 11, 903908 (2014).
http://dx.doi.org/10.1038/nmeth.3070
8.
8. M. Cammarata, M. Levantino, F. Schotte, P. A. Anfinrud, F. Ewald et al., “ Tracking the structural dynamics of proteins in solution using time-resolved wide-angle x-ray scattering,” Nat. Methods 5, 881887 (2008).
http://dx.doi.org/10.1038/nmeth.1255
9.
9. F. Schotte, M. Lim, T. A. Jackson, A. V. Smirnov, J. Soman et al., “ Watching a protein as it functions with 150-ps time-resolved x-ray crystallography,” Science 300, 19441947 (2003).
http://dx.doi.org/10.1126/science.1078797
10.
10. S. Boutet, L. Lomb, G. J. Williams, T. R. M. Barends, A. Aquila et al., “ High-resolution protein structure determination by serial femtosecond crystallography,” Science 337, 362365 (2012).
http://dx.doi.org/10.1126/science.1217737
11.
11. J. Tenboer, S. Basu, N. Zatsepin, K. Pande, D. Milathianaki et al., “ Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein,” Science 346, 1242 (2014).
http://dx.doi.org/10.1126/science.1259357
12.
12. F. Schotte, H. Sun, V. R. I. Kaila, H. Kamikubo, N. Dashdorj et al., “ Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography,” Proc. Natl. Acad. Sci. U. S. A. 109, 1925619261 (2012).
http://dx.doi.org/10.1073/pnas.1210938109
13.
13. C. Mueller, Ph.D thesis, University of Toronto, 2014.
14.
14. A. Zarrine-Afsar, T. R. M. Barends, C. Müller, M. R. Fuchs, L. Lomb et al., “ Crystallography on a chip,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 68, 321323 (2012).
http://dx.doi.org/10.1107/S0907444911055296
15.
15. A. Le Maire, M. Gelin, S. Pochet, F. Hoh, M. Pirocchi et al., “ In-plate protein crystallization, in situ ligand soaking and x-ray diffraction,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 67, 747755 (2011).
http://dx.doi.org/10.1107/S0907444911023249
16.
16. G. Winter and K. E. McAuley, “ Automated data collection for macromolecular crystallography,” Methods 55, 8193 (2011).
http://dx.doi.org/10.1016/j.ymeth.2011.06.010
17.
17. J. Foadi, P. Aller, Y. Alguel, A. Cameron, D. Axford et al., “ Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 69, 16171632 (2013).
http://dx.doi.org/10.1107/S0907444913012274
18.
18. P. Coppens, M. Pitak, M. Gembicky, M. Messerschmidt, S. Scheins et al., “ The RATIO method for time-resolved Laue crystallography,” J. Synchrotron Radiat. 16, 226230 (2009).
http://dx.doi.org/10.1107/S0909049508040892
19.
19. W. Brehm and K. Diederichs, “ Breaking the indexing ambiguity in serial crystallography,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 70, 101109 (2014).
http://dx.doi.org/10.1107/S1399004713025431
20.
20. T. E. Carver, R. E. Brantley, E. W. Singleton, R. M. Arduini, M. L. Quillin et al., “ A novel site-directed mutant of myoglobin with an unusually high O2 affinity and low autooxidation rate,” J. Biol. Chem. 267, 1444314450 (1992).
21.
21. D. P. DePonte, U. Weierstall, K. Schmidt, J. Warner, D. Starodub et al., “ Gas dynamic virtual nozzle for generation of microscopic droplet streams,” J. Phys. D: Appl. Phys. 41, 195505 (2008).
http://dx.doi.org/10.1088/0022-3727/41/19/195505
22.
22. C. Kupitz, S. Basu, I. Grotjohann, R. Fromme, N. A. Zatsepin et al., “ Serial time-resolved crystallography of photosystem II using a femtosecond x-ray laser,” Nature 513, 261265 (2014).
http://dx.doi.org/10.1038/nature13453
23.
23. J. Hattne, N. Echols, R. Tran, J. Kern, R. J. Gildea et al., “ Accurate macromolecular structures using minimal measurements from x-ray free-electron lasers,” Nat. Methods 11, 545548 (2014).
http://dx.doi.org/10.1038/nmeth.2887
24.
24. B. A. Springer and S. G. Sligar, “ High-level expression of sperm whale myoglobin in Escherichia coli,” Proc. Natl. Acad. Sci. U. S. A. 84, 89618965 (1987).
http://dx.doi.org/10.1073/pnas.84.24.8961
25.
25. K. D. Egeberg, B. A. Springer, S. G. Sligar, T. E. Carver, R. J. Rohlfs, and J. S. Olson, “ The role of Val68(E11) in ligand binding to sperm whale myoglobin. Site-directed mutagenesis of a synthetic gene,” J. Biol. Chem. 265, 1178811795 (1990).
26.
26. G. N. Phillips, R. M. Arduini, B. A. Springer, and S. G. Sligar, “ Crystal structure of myoglobin from a synthetic gene,” Proteins: Struct., Funct., Genet. 7, 358365 (1990).
http://dx.doi.org/10.1002/prot.340070407
27.
27. A. Zarrine-Afsar, C. Müller, F. O. Talbot, and R. J. D. Miller, “ Self-localizing stabilized mega-pixel picoliter arrays with size-exclusion sorting capabilities,” Anal. Chem. 83, 767773 (2011).
http://dx.doi.org/10.1021/ac1021024
28.
28. M. Harmand, R. Coffee, M. R. Bionta, M. Chollet, D. French et al., “ Achieving few-femtosecond time-sorting at hard x-ray free-electron lasers,” Nat. Photonics 7, 215218 (2013).
http://dx.doi.org/10.1038/nphoton.2013.11
29.
29. G. Winter, “ Xia2: An expert system for macromolecular crystallography data reduction,” J. Appl. Crystallogr. 43, 186190 (2010).
http://dx.doi.org/10.1107/S0021889809045701
30.
30. M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., “ Overview of the CCP4 suite and current developments,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 67, 235242 (2011).
http://dx.doi.org/10.1107/S0907444910045749
31.
31. W. Kabsch, “ XDS,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 125132 (2010).
http://dx.doi.org/10.1107/S0907444909047337
32.
32. P. Evans, “ Scaling and assessment of data quality,” Acta Crystallogr., Sect. D: Biol. Crystallogr. 62, 7282 (2006).
http://dx.doi.org/10.1107/S0907444905036693
33.
33.R Core Team, “ R: A language and environment for statistical computing,” R Foundation for Statistical Computing, Vienna, Austria 2014, see http://www.R-project.org/.
34.
34. P. Roedig et al., Sci. Rep. 5, 10451 (2015).
http://dx.doi.org/10.1038/srep10451
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/5/10.1063/1.4928706
Loading
/content/aca/journal/sdy/2/5/10.1063/1.4928706
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/5/10.1063/1.4928706
2015-08-18
2016-12-03

Abstract

We present a crystallography chip enabling room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/5/1.4928706.html;jsessionid=1p5rG2CxGTCnm-z6pbUp8_pl.x-aip-live-02?itemId=/content/aca/journal/sdy/2/5/10.1063/1.4928706&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/5/10.1063/1.4928706&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/5/10.1063/1.4928706'
Right1,Right2,Right3,