Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/5/10.1063/1.4930174
1.
1. A. H. Zewail, “ Four-dimensional electron microscopy,” Science 328, 187 (2010).
http://dx.doi.org/10.1126/science.1166135
2.
2. D. J. Flannigan and A. H. Zewail, “ 4D electron microscopy: Principles and applications,” Acc. Chem. Res. 45, 1828 (2012).
http://dx.doi.org/10.1021/ar3001684
3.
3. A. H. Zewail, “ Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660 (2000).
http://dx.doi.org/10.1021/jp001460h
4.
4. D. A. Plemmons, P. K. Suri, and D. J. Flannigan, “ Probing structural and electronic dynamics with ultrafast electron microscopy,” Chem. Mater. 27, 3178 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b00433
5.
5. W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “ Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
http://dx.doi.org/10.1063/1.1927699
6.
6. V. A. Lobastov, R. Srinivasan, and A. H. Zewail, “ Four-dimensional ultrafast electron microscopy,” Proc. Natl. Acad. Sci., U.S.A. 102, 7069 (2005).
http://dx.doi.org/10.1073/pnas.0502607102
7.
7. H. S. Park, J. S. Baskin, O.-H. Kwon, and A. H. Zewail, “ Atomic-scale imaging in real and energy space developed in ultrafast electron microscopy,” Nano Lett. 7, 2545 (2007).
http://dx.doi.org/10.1021/nl071369q
8.
8. L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, “ Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology,” Chem. Phys. 423, 79 (2013).
http://dx.doi.org/10.1016/j.chemphys.2013.06.026
9.
9. D. J. Flannigan and O. Lourie, “ 4D ultrafast electron microscopy sheds light on dynamic processes from the micrometer to the atomic scale,” Microsc. Anal. 27, S5 (2013).
10.
10. M. S. Grinolds, V. A. Lobastov, J. Weissenrieder, and A. H. Zewail, “ Four-dimensional ultrafast electron microscopy of phase transitions,” Proc. Natl. Acad. Sci., U.S.A. 103, 18427 (2006).
http://dx.doi.org/10.1073/pnas.0609233103
11.
11. D. J. Flannigan and A. H. Zewail, “ Optomechanical and crystallization phenomena visualized with 4D electron microscopy: Interfacial carbon nanotubes on silicon nitride,” Nano Lett. 10, 1892 (2010).
http://dx.doi.org/10.1021/nl100733h
12.
12. S. T. Park, D. J. Flannigan, and A. H. Zewail, “ Irreversible chemical reactions visualized in space and time with 4D electron microscopy,” J. Am. Chem. Soc. 133, 1730 (2011).
http://dx.doi.org/10.1021/ja110952k
13.
13. U. J. Lorenz and A. H. Zewail, “ Observing liquid flow in nanotubes by 4D electron microscopy,” Science 344, 1496 (2014).
http://dx.doi.org/10.1126/science.1253618
14.
14. B. Barwick, H. S. Park, O.-H. Kwon, J. S. Baskin, and A. H. Zewail, “ 4D imaging of transient structures and morphologies in ultrafast electron microscopy,” Science 322, 1227 (2008).
http://dx.doi.org/10.1126/science.1164000
15.
15.See http://www.pulsar.nl/gpt for details regarding the General Particle Tracer software code.
16.
16. J. Barnes and P. Hut, “ A hierarchical O(N log N) force-calculation algorithm,” Nature 324, 446 (1986).
http://dx.doi.org/10.1038/324446a0
17.
17. J. Barnes, “ A modified tree code: Don't laugh; it runs,” J. Comput. Phys. 87, 161 (1990).
http://dx.doi.org/10.1016/0021-9991(90)90232-P
18.
18. J. D. Geiser and P. M. Weber, “ High-repetition-rate time-resolved gas phase electron diffraction,” Proc. SPIE 2521, 136 (1995).
http://dx.doi.org/10.1117/12.218345
19.
19. T. van Oudheusden, E. F. de Jong, S. B. van der Geer, W. P. E. M. Op 't Root, O. J. Luiten, and B. J. Siwick, “ Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range,” J. Appl. Phys. 102, 093501 (2007).
http://dx.doi.org/10.1063/1.2801027
20.
20. M. R. Armstrong, K. Boyden, N. D. Browning, G. H. Campbell, J. D. Colvin, W. J. DeHope, A. M. Frank, D. J. Gibson, F. Hartemann, J. S. Kim, W. E. King, T. B. LaGrange, B. J. Pyke, B. W. Reed, R. M. Shuttlesworth, B. C. Stuart, and B. R. Torralva, “ Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy,” Ultramicroscopy 107, 356 (2007).
http://dx.doi.org/10.1016/j.ultramic.2006.09.005
21.
21. A. Gahlmann, S. T. Park, and A. H. Zewail, “ Ultrashort electron pulses for diffraction, crystallography and microscopy: Theoretical and experimental resolutions,” Phys. Chem. Chem. Phys. 10, 2894 (2008).
http://dx.doi.org/10.1039/b802136h
22.
22. B. Barwick, D. J. Flannigan, and A. H. Zewail, “ Photon-induced near-field electron microscopy,” Nature 462, 902 (2009).
http://dx.doi.org/10.1038/nature08662
23.
23. S. T. Park, M. Lin, and A. H. Zewail, “ Photon-induced near-field electron microscopy (PINEM): Theoretical and experimental,” New J. Phys. 12, 123028 (2010).
http://dx.doi.org/10.1088/1367-2630/12/12/123028
24.
24. D. A. Plemmons, S. T. Park, A. H. Zewail, and D. J. Flannigan, “ Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy,” Ultramicroscopy 146, 97 (2014).
http://dx.doi.org/10.1016/j.ultramic.2014.08.001
25.
25. A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “ Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521, 200 (2015).
http://dx.doi.org/10.1038/nature14463
26.
26. L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “ Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).
http://dx.doi.org/10.1038/ncomms7407
27.
27. S. A. Hilbert, C. Uiterwaal, B. Barwick, H. Batelaan, and A. H. Zewail, “ Temporal lenses for attosecond and femtosecond electron pulses,” Proc. Natl. Acad. Sci., U.S.A. 106, 10558 (2009).
http://dx.doi.org/10.1073/pnas.0904912106
28.
28. M. Aidelsburger, F. O. Kirchner, F. Krausz, and P. Baum, “ Single-electron pulses for ultrafast diffraction,” Proc. Natl. Acad. Sci., U.S.A. 107, 19714 (2010).
http://dx.doi.org/10.1073/pnas.1010165107
29.
29. M. Gao, H. Jean-Ruel, R. R. Cooney, J. Stampe, M. de Jong, M. Harb, G. Sciaini, G. Moriena, and R. J. D. Miller, “ Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering,” Opt. Express 20, 12048 (2012).
http://dx.doi.org/10.1364/OE.20.012048
30.
30. R. P. Chatelain, V. R. Morrison, C. Godbout, and B. J. Siwick, “ Ultrafast electron diffraction with radio-frequency compressed electron pulses,” Appl. Phys. Lett. 101, 081901 (2012).
http://dx.doi.org/10.1063/1.4747155
31.
31. P. Baum, “ On the physics of ultrashort single-electron pulses for time-resolved microscopy and diffraction,” Chem. Phys. 423, 55 (2013).
http://dx.doi.org/10.1016/j.chemphys.2013.06.012
32.
32. R. P. Chatelain, V. Morrison, C. Godbout, B. van der Geer, M. de Loos, and B. J. Siwick, “ Space-charge effects in ultrafast electron diffraction patterns from single crystals,” Ultramicroscopy 116, 86 (2012).
http://dx.doi.org/10.1016/j.ultramic.2012.03.001
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/5/10.1063/1.4930174
Loading
/content/aca/journal/sdy/2/5/10.1063/1.4930174
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/5/10.1063/1.4930174
2015-09-02
2016-12-07

Abstract

Ultrafast electron microscopes with thermionic guns and LaB sources can be operated in both the nanosecond, single-shot and femtosecond, single-electron modes. This has been demonstrated with conventional Wehnelt electrodes and absent any applied bias. Here, by conducting simulations using the General Particle Tracer code, we define the electron-gun parameter space within which various modes may be optimized. The properties of interest include electron collection efficiency, temporal and energy spreads, and effects of laser-pulse duration incident on the LaB source. We find that collection efficiencies can reach 100% for all modes, despite there being no bias applied to the electrode.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/5/1.4930174.html;jsessionid=yOPodKbP-Zr5cwoLP7IElGyv.x-aip-live-06?itemId=/content/aca/journal/sdy/2/5/10.1063/1.4930174&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/5/10.1063/1.4930174&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/5/10.1063/1.4930174'
Right1,Right2,Right3,