Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. H. Zewail, “ Four-dimensional electron microscopy,” Science 328, 187 (2010).
2. D. J. Flannigan and A. H. Zewail, “ 4D electron microscopy: Principles and applications,” Acc. Chem. Res. 45, 1828 (2012).
3. A. H. Zewail, “ Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660 (2000).
4. D. A. Plemmons, P. K. Suri, and D. J. Flannigan, “ Probing structural and electronic dynamics with ultrafast electron microscopy,” Chem. Mater. 27, 3178 (2015).
5. W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “ Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
6. V. A. Lobastov, R. Srinivasan, and A. H. Zewail, “ Four-dimensional ultrafast electron microscopy,” Proc. Natl. Acad. Sci., U.S.A. 102, 7069 (2005).
7. H. S. Park, J. S. Baskin, O.-H. Kwon, and A. H. Zewail, “ Atomic-scale imaging in real and energy space developed in ultrafast electron microscopy,” Nano Lett. 7, 2545 (2007).
8. L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, “ Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology,” Chem. Phys. 423, 79 (2013).
9. D. J. Flannigan and O. Lourie, “ 4D ultrafast electron microscopy sheds light on dynamic processes from the micrometer to the atomic scale,” Microsc. Anal. 27, S5 (2013).
10. M. S. Grinolds, V. A. Lobastov, J. Weissenrieder, and A. H. Zewail, “ Four-dimensional ultrafast electron microscopy of phase transitions,” Proc. Natl. Acad. Sci., U.S.A. 103, 18427 (2006).
11. D. J. Flannigan and A. H. Zewail, “ Optomechanical and crystallization phenomena visualized with 4D electron microscopy: Interfacial carbon nanotubes on silicon nitride,” Nano Lett. 10, 1892 (2010).
12. S. T. Park, D. J. Flannigan, and A. H. Zewail, “ Irreversible chemical reactions visualized in space and time with 4D electron microscopy,” J. Am. Chem. Soc. 133, 1730 (2011).
13. U. J. Lorenz and A. H. Zewail, “ Observing liquid flow in nanotubes by 4D electron microscopy,” Science 344, 1496 (2014).
14. B. Barwick, H. S. Park, O.-H. Kwon, J. S. Baskin, and A. H. Zewail, “ 4D imaging of transient structures and morphologies in ultrafast electron microscopy,” Science 322, 1227 (2008).
15.See for details regarding the General Particle Tracer software code.
16. J. Barnes and P. Hut, “ A hierarchical O(N log N) force-calculation algorithm,” Nature 324, 446 (1986).
17. J. Barnes, “ A modified tree code: Don't laugh; it runs,” J. Comput. Phys. 87, 161 (1990).
18. J. D. Geiser and P. M. Weber, “ High-repetition-rate time-resolved gas phase electron diffraction,” Proc. SPIE 2521, 136 (1995).
19. T. van Oudheusden, E. F. de Jong, S. B. van der Geer, W. P. E. M. Op 't Root, O. J. Luiten, and B. J. Siwick, “ Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range,” J. Appl. Phys. 102, 093501 (2007).
20. M. R. Armstrong, K. Boyden, N. D. Browning, G. H. Campbell, J. D. Colvin, W. J. DeHope, A. M. Frank, D. J. Gibson, F. Hartemann, J. S. Kim, W. E. King, T. B. LaGrange, B. J. Pyke, B. W. Reed, R. M. Shuttlesworth, B. C. Stuart, and B. R. Torralva, “ Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy,” Ultramicroscopy 107, 356 (2007).
21. A. Gahlmann, S. T. Park, and A. H. Zewail, “ Ultrashort electron pulses for diffraction, crystallography and microscopy: Theoretical and experimental resolutions,” Phys. Chem. Chem. Phys. 10, 2894 (2008).
22. B. Barwick, D. J. Flannigan, and A. H. Zewail, “ Photon-induced near-field electron microscopy,” Nature 462, 902 (2009).
23. S. T. Park, M. Lin, and A. H. Zewail, “ Photon-induced near-field electron microscopy (PINEM): Theoretical and experimental,” New J. Phys. 12, 123028 (2010).
24. D. A. Plemmons, S. T. Park, A. H. Zewail, and D. J. Flannigan, “ Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy,” Ultramicroscopy 146, 97 (2014).
25. A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “ Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521, 200 (2015).
26. L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “ Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).
27. S. A. Hilbert, C. Uiterwaal, B. Barwick, H. Batelaan, and A. H. Zewail, “ Temporal lenses for attosecond and femtosecond electron pulses,” Proc. Natl. Acad. Sci., U.S.A. 106, 10558 (2009).
28. M. Aidelsburger, F. O. Kirchner, F. Krausz, and P. Baum, “ Single-electron pulses for ultrafast diffraction,” Proc. Natl. Acad. Sci., U.S.A. 107, 19714 (2010).
29. M. Gao, H. Jean-Ruel, R. R. Cooney, J. Stampe, M. de Jong, M. Harb, G. Sciaini, G. Moriena, and R. J. D. Miller, “ Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering,” Opt. Express 20, 12048 (2012).
30. R. P. Chatelain, V. R. Morrison, C. Godbout, and B. J. Siwick, “ Ultrafast electron diffraction with radio-frequency compressed electron pulses,” Appl. Phys. Lett. 101, 081901 (2012).
31. P. Baum, “ On the physics of ultrashort single-electron pulses for time-resolved microscopy and diffraction,” Chem. Phys. 423, 55 (2013).
32. R. P. Chatelain, V. Morrison, C. Godbout, B. van der Geer, M. de Loos, and B. J. Siwick, “ Space-charge effects in ultrafast electron diffraction patterns from single crystals,” Ultramicroscopy 116, 86 (2012).

Data & Media loading...


Article metrics loading...



Ultrafast electron microscopes with thermionic guns and LaB sources can be operated in both the nanosecond, single-shot and femtosecond, single-electron modes. This has been demonstrated with conventional Wehnelt electrodes and absent any applied bias. Here, by conducting simulations using the General Particle Tracer code, we define the electron-gun parameter space within which various modes may be optimized. The properties of interest include electron collection efficiency, temporal and energy spreads, and effects of laser-pulse duration incident on the LaB source. We find that collection efficiencies can reach 100% for all modes, despite there being no bias applied to the electrode.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd