Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/5/10.1063/1.4931825
1.
1. N. Go, T. Noguti, and T. Nishikawa, Proc. Natl. Acad. Sci. U. S. A. 80(12), 3696 (1983).
http://dx.doi.org/10.1073/pnas.80.12.3696
2.
2. K. A. Henzler-Wildman, M. Lei, V. Thai, S. J. Kerns, M. Karplus, and D. Kern, Nature 450(7171), 913 (2007).
http://dx.doi.org/10.1038/nature06407
3.
3. M. Karplus, Proc. Natl. Acad. Sci. U. S. A. 107(17), E71E72 (2010).
http://dx.doi.org/10.1073/pnas.1002180107
4.
4. J. Ma, Structure 13(3), 373 (2005).
http://dx.doi.org/10.1016/j.str.2005.02.002
5.
5. D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, Nat. Commun. 5, 3999 (2014).
http://dx.doi.org/10.1038/ncomms4999
6.
6. H. Fröhlich, Int. J. Quantum Chem. 2(5), 641 (1968).
http://dx.doi.org/10.1002/qua.560020505
7.
7. P. Weightman, Phys. Biol. 9(5), 053001 (2012).
http://dx.doi.org/10.1088/1478-3975/9/5/053001
8.
8. J. Pokorny, Bioelectrochem. Bioenerg. 48(2), 267 (1999).
http://dx.doi.org/10.1016/S0302-4598(99)00016-1
9.
9. J. Saint-Blancard, A. Clochard, P. Cozzone, J. Berthou, and P. Jolles, Biochim. Biophys. Acta 491(1), 354 (1977).
http://dx.doi.org/10.1016/0005-2795(77)90074-5
10.
10.See supplementary material at http://dx.doi.org/10.1063/1.4931825 for additional information about the data collection strategy and validation of the experimental approach.[Supplementary Material]
11.
11. K. A. Dill, K. Ghosh, and J. D. Schmit, Proc. Natl. Acad. Sci. U. S. A. 108(44), 17876 (2011).
http://dx.doi.org/10.1073/pnas.1114477108
12.
12. M. H. Vos, F. Rappaport, J.-C. Lambry, J. Breton, and J.-L. Martin, Nature 363, 320 (1993).
http://dx.doi.org/10.1038/363320a0
13.
13. G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature 446(7137), 782 (2007).
http://dx.doi.org/10.1038/nature05678
14.
14. G. Acbas, K. A. Niessen, E. H. Snell, and A. G. Markelz, Nat. Commun. 5, 3076 (2014).
http://dx.doi.org/10.1038/ncomms4076
15.
15. A. Xie, A. F. van der Meer, and R. H. Austin, Phys. Rev. Lett. 88(1), 018102 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.018102
16.
16. K. S. Paithankar, R. L. Owen, and E. F. Garman, J. Synchrotron Radiat. 16(Pt 2), 152 (2009).
http://dx.doi.org/10.1107/S0909049508040430
17.
17. W. Kabsch, Acta Crystallogr. D 66(Pt 2), 125 (2010).
http://dx.doi.org/10.1107/S0907444909047337
18.
18.Collaborative Computational Project Number 4, Acta. Crystallogr. D 50(Pt 5), 760 (1994).
http://dx.doi.org/10.1107/S0907444994003112
19.
19. L. Howell and D. Smith, J. Appl. Cryst. 25, 81 (1992).
http://dx.doi.org/10.1107/S0021889891010385
20.
20. R. C. Agarwal, Acta Crystallogr. A 34, 791 (1978).
http://dx.doi.org/10.1107/S0567739478001618
21.
21. R. J. Read, Acta Crystallogr. A 42(pt.3), 140 (1986).
http://dx.doi.org/10.1107/S0108767386099622
22.
22. M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, and K. S. Wilson, Acta Crystallogr. Sec. D: Biol. Crystallogr. 67(Pt. 4), 235242 (2011).
http://dx.doi.org/10.1107/S0907444910045749
23.
23. G. N. Murshudov, P. Skubak, A. A. Lebedev, N. S. Pannu, R. A. Steiner, R. A. Nicholls, M. D. Winn, F. Long, and A. A. Vagin, Acta Crystallogr. D 67, 355 (2011).
http://dx.doi.org/10.1107/S0907444911001314
24.
24. P. H. Siegel, IEEE Trans. Microwave Theory 52(10), 2438 (2004).
http://dx.doi.org/10.1109/TMTT.2004.835916
25.
25. B. G. Guimaraes, L. Sanfelici, R. T. Neuenschwander, F. Rodrigues, W. C. Grizolli, M. A. Raulik, J. R. Piton, B. C. Meyer, A. S. Nascimento, and I. Polikarpov, J. Synchrotron Radiat. 16(Pt 1), 69 (2009).
http://dx.doi.org/10.1107/S0909049508034870
26.
26. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, J. Comput. Chem. 26(16), 1701 (2005).
http://dx.doi.org/10.1002/jcc.20291
27.
27. H. J. C. Berendsen, D. Vanderspoel, and R. Vandrunen, Comput. Phys. Commun. 91(1–3), 43 (1995).
http://dx.doi.org/10.1016/0010-4655(95)00042-E
28.
28. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4(3), 435 (2008).
http://dx.doi.org/10.1021/ct700301q
29.
29. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling, Proteins 65(3), 712 (2006).
http://dx.doi.org/10.1002/prot.21123
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/5/10.1063/1.4931825
Loading
/content/aca/journal/sdy/2/5/10.1063/1.4931825
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/5/10.1063/1.4931825
2015-10-13
2016-07-27

Abstract

Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/5/1.4931825.html;jsessionid=WoHC3ZlwwL25HOHUtuZk9fqH.x-aip-live-06?itemId=/content/aca/journal/sdy/2/5/10.1063/1.4931825&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/5/10.1063/1.4931825&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/5/10.1063/1.4931825'
Right1,Right2,Right3,