Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. N. Go, T. Noguti, and T. Nishikawa, Proc. Natl. Acad. Sci. U. S. A. 80(12), 3696 (1983).
2. K. A. Henzler-Wildman, M. Lei, V. Thai, S. J. Kerns, M. Karplus, and D. Kern, Nature 450(7171), 913 (2007).
3. M. Karplus, Proc. Natl. Acad. Sci. U. S. A. 107(17), E71E72 (2010).
4. J. Ma, Structure 13(3), 373 (2005).
5. D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, Nat. Commun. 5, 3999 (2014).
6. H. Fröhlich, Int. J. Quantum Chem. 2(5), 641 (1968).
7. P. Weightman, Phys. Biol. 9(5), 053001 (2012).
8. J. Pokorny, Bioelectrochem. Bioenerg. 48(2), 267 (1999).
9. J. Saint-Blancard, A. Clochard, P. Cozzone, J. Berthou, and P. Jolles, Biochim. Biophys. Acta 491(1), 354 (1977).
10.See supplementary material at for additional information about the data collection strategy and validation of the experimental approach.[Supplementary Material]
11. K. A. Dill, K. Ghosh, and J. D. Schmit, Proc. Natl. Acad. Sci. U. S. A. 108(44), 17876 (2011).
12. M. H. Vos, F. Rappaport, J.-C. Lambry, J. Breton, and J.-L. Martin, Nature 363, 320 (1993).
13. G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature 446(7137), 782 (2007).
14. G. Acbas, K. A. Niessen, E. H. Snell, and A. G. Markelz, Nat. Commun. 5, 3076 (2014).
15. A. Xie, A. F. van der Meer, and R. H. Austin, Phys. Rev. Lett. 88(1), 018102 (2002).
16. K. S. Paithankar, R. L. Owen, and E. F. Garman, J. Synchrotron Radiat. 16(Pt 2), 152 (2009).
17. W. Kabsch, Acta Crystallogr. D 66(Pt 2), 125 (2010).
18.Collaborative Computational Project Number 4, Acta. Crystallogr. D 50(Pt 5), 760 (1994).
19. L. Howell and D. Smith, J. Appl. Cryst. 25, 81 (1992).
20. R. C. Agarwal, Acta Crystallogr. A 34, 791 (1978).
21. R. J. Read, Acta Crystallogr. A 42(pt.3), 140 (1986).
22. M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, and K. S. Wilson, Acta Crystallogr. Sec. D: Biol. Crystallogr. 67(Pt. 4), 235242 (2011).
23. G. N. Murshudov, P. Skubak, A. A. Lebedev, N. S. Pannu, R. A. Steiner, R. A. Nicholls, M. D. Winn, F. Long, and A. A. Vagin, Acta Crystallogr. D 67, 355 (2011).
24. P. H. Siegel, IEEE Trans. Microwave Theory 52(10), 2438 (2004).
25. B. G. Guimaraes, L. Sanfelici, R. T. Neuenschwander, F. Rodrigues, W. C. Grizolli, M. A. Raulik, J. R. Piton, B. C. Meyer, A. S. Nascimento, and I. Polikarpov, J. Synchrotron Radiat. 16(Pt 1), 69 (2009).
26. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, J. Comput. Chem. 26(16), 1701 (2005).
27. H. J. C. Berendsen, D. Vanderspoel, and R. Vandrunen, Comput. Phys. Commun. 91(1–3), 43 (1995).
28. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4(3), 435 (2008).
29. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling, Proteins 65(3), 712 (2006).

Data & Media loading...


Article metrics loading...



Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd