Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/2/5/10.1063/1.4933133
1.
1. H. Ding et al., “ Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors,” Nature 382, 5154 (1996).
http://dx.doi.org/10.1038/382051a0
2.
2. A. G. Loeser et al., “ Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+δ,” Science 273, 325329 (1996).
http://dx.doi.org/10.1126/science.273.5273.325
3.
3. M. R. Norman et al., “ Destruction of the Fermi surface in underdoped high-Tc superconductors,” Nature 392, 157160 (1998).
http://dx.doi.org/10.1038/32366
4.
4. A. Damascelli, Z. Hussain, and Z.-X. Shen, “ Angle-resolved photoemission studies of the cuprate superconductors,” Rev. Mod. Phys. 75, 473541 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.473
5.
5. I. M. Vishik et al., “ ARPES studies of cuprate Fermiology: Superconductivity, pseudogap and quasiparticle dynamics,” New J. Phys. 12, 105008 (2010).
http://dx.doi.org/10.1088/1367-2630/12/10/105008
6.
6. T. Devereaux, T. Cuk, Z.-X. Shen, and N. Nagaosa, “ Anisotropic electron-phonon interaction in the cuprates,” Phys. Rev. Lett. 93, 117004 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.117004
7.
7. T. Dahm et al., “ Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor,” Nat. Phys. 5, 217221 (2009).
http://dx.doi.org/10.1038/nphys1180
8.
8. A. Lanzara et al., “ Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors,” Nature 412, 510514 (2001).
http://dx.doi.org/10.1038/35087518
9.
9. A. D. Gromko et al., “ Mass-renormalized electronic excitations at (π,0) in the superconducting state of Bi2Sr2CaCu2O8+δ,” Phys. Rev. B 68, 174520 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.174520
10.
10. J. Demsar et al., “ Superconducting Gap Δc, the pseudogap Δp, and pair fluctuations above Tc in overdoped Y1−xCaxBa2Cu3O7−δ from femtosecond time-domain spectroscopy,” Phys. Rev. Lett. 82, 4918 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4918
11.
11. N. Gedik et al., “ Single-quasiparticle stability and quasiparticle-pair decay in YBa2Cu3O6.5,” Phys. Rev. B 70, 014504 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.014504
12.
12. R. A. Kaindl et al., “ Dynamics of Cooper pair formation in Bi2Sr2CaCu2O8+δ,” Phys. Rev. B 72, 060510(R) (2005).
http://dx.doi.org/10.1103/PhysRevB.72.060510
13.
13. F. Schmitt et al., “ Transient electronic structure and melting of a charge density wave in TbTe3,” Science 321, 16491652 (2008).
http://dx.doi.org/10.1126/science.1160778
14.
14. L. Perfetti et al., “ Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+δ by time-resolved photoelectron spectroscopy,” Phys. Rev. Lett. 99, 197001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.197001
15.
15. R. Cortes et al., “ Momentum-resolved ultrafast electron dynamics in superconducting Bi2Sr2CaCu2O8+δ,” Phys. Rev. Lett. 107, 097002 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.097002
16.
16. J. Graf et al., “ Nodal quasiparticle meltdown in ultrahigh–resolution pump–probe angle-resolved photoemission,” Nat. Phys. 7, 805809 (2011).
http://dx.doi.org/10.1038/nphys2027
17.
17. C. L. Smallwood et al., “ Tracking Cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission,” Science 336, 11371139 (2012).
http://dx.doi.org/10.1126/science.1217423
18.
18. G. L. Dakovski, Y. Li, T. Durakiewicz, and G. Rodriguez, “ Tunable ultrafast extreme ultraviolet source for time- and angle-resolved photoemission spectroscopy,” Rev. Sci. Instrum. 81, 073108 (2010).
http://dx.doi.org/10.1063/1.3460267
19.
19. T. Rohwer et al., “ Collapse of long-range charge order tracked by time-resolved photoemission at high momenta,” Nature 471, 490493 (2011).
http://dx.doi.org/10.1038/nature09829
20.
20. J. C. Petersen et al., “ Clocking the melting transition of charge and lattice order in 1T-TaS2 with ultrafast extreme-ultraviolet angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 107, 177402 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.177402
21.
21. G. L. Dakovski et al., “ Anomalous femtosecond quasiparticle dynamics of hidden order state in URu2Si2,” Phys. Rev. B 84, 161103(R) (2011).
http://dx.doi.org/10.1103/PhysRevB.84.161103
22.
22. S. M. Gilberson et al., “ Tracing ultrafast separation and coalescence of carrier distributions in graphene with time-resolved photoemission,” J. Phys. Chem. Lett. 3, 6468 (2012).
http://dx.doi.org/10.1021/jz2014067
23.
23. S. M. Gilberson et al., “ Ultrafast photoemission spectroscopy of the uranium dioxide UO2 Mott insulator: Evidence for a robust energy gap structure,” Phys. Rev. Lett. 112, 087402 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.087402
24.
24. I. Gierz et al., “ Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 11191124 (2013).
http://dx.doi.org/10.1038/nmat3757
25.
25. Y. Toda et al., “ Quasiparticle relaxation dynamics in underdoped Bi2Sr2CaCu2O8+δ by two-color pump-probe spectroscopy,” Phys. Rev. B 84, 174516 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.174516
26.
26. C. L. Smallwood et al., “ Time- and momentum-resolved gap dynamics in Bi2Sr2CaCu2O8+δ,” Phys. Rev. B 89, 115126 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.115126
27.
27. C. L. Smallwood et al., “ Quasiparticle relaxation amidst optically destroyed superconductivity in Bi2Sr2CaCu2O8+δ,” e-print arXiv:1503.05795.
28.
28. Z.-X. Shen and D. Dessau, “ Electronic structure and photoemission studies of late transition-metal oxides—Mott insulators and high-temperature superconductors,” Phys. Rep. 253, 1162 (1995).
http://dx.doi.org/10.1016/0370-1573(95)80001-A
29.
29. P. Kusar et al., “ Controlled vaporization of the superconducting condensate in cuprate superconductors by femtosecond photoexcitation,” Phys. Rev. Lett. 101, 227001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.227001
30.
30. C. Giannetti et al., “ Discontinuity of the ultrafast electronic response of underdoped superconducting Bi2Sr2CaCu2O8+δ strongly excited by ultrashort light pulses,” Phys. Rev. B 79, 224502 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.224502
31.
31. G. Coslovich et al., “ Evidence for a photoinduced nonthermal superconducting-to-normal-state phase transition in overdoped Bi2Sr2Ca0.92Y0.02Cu2O8+δ,” Phys. Rev. B 83, 064519 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.064519
32.
32. H. F. Fong et al., “ Neutron scattering from magnetic excitations in Bi2Sr2CaCu2O8+δ,” Nature 398, 588591 (1999).
http://dx.doi.org/10.1038/19255
33.
33. P. M. Echenique et al., “ Decay of electronic excitations at metal surfaces,” Surf. Sci. Rep. 52, 219317 (2004).
http://dx.doi.org/10.1016/j.surfrep.2004.02.002
http://aip.metastore.ingenta.com/content/aca/journal/sdy/2/5/10.1063/1.4933133
Loading
/content/aca/journal/sdy/2/5/10.1063/1.4933133
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/2/5/10.1063/1.4933133
2015-10-12
2016-09-26

Abstract

A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy, which significantly limits the accessible momentum space. Using 20.15 eV, 12 fs pulses, we show for the first time the evolution of quasiparticles in the antinodal region of BiSrCaCuO and demonstrate that non-monotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in stark contrast to the monotonic relaxation in the nodal and off-nodal regions.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/2/5/1.4933133.html;jsessionid=37TrvUZDQh0MDZ75dDj5SsVn.x-aip-live-03?itemId=/content/aca/journal/sdy/2/5/10.1063/1.4933133&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/2/5/10.1063/1.4933133&pageURL=http://scitation.aip.org/content/aca/journal/sdy/2/5/10.1063/1.4933133'
Right1,Right2,Right3,