Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/1/10.1063/1.4940228
1.
1. J. Monod , J. Wyman , and J. P. Changeux , “ On the natute of allosteric transitions: A plausible model,” J. Mol. Biol. 12, 88118 (1965).
http://dx.doi.org/10.1016/S0022-2836(65)80285-6
2.
2. W. A. Eaton , E. R. Henry , J. Hofrichter , and A. Mozzarelli , “ Is cooperative oxygen binding by hemoglobin really understood?,” Nat. Struct. Biol. 6, 351358 (1999).
http://dx.doi.org/10.1038/7586
3.
3. M. Brunori , “ Half a century of hemoglobins allostery,” Biophys. J. 109, 10771079 (2015).
http://dx.doi.org/10.1016/j.bpj.2015.06.025
4.
4. H. S. Chung , S. Piana-Agostinetti , D. E. Shaw , and W. A. Eaton , “ Structural origin of landscape roughness in protein folding from single-molecule {FRET} and all-atom molecular dynamics simulations,” Biophys. J. 108, 347a (2015).
http://dx.doi.org/10.1016/j.bpj.2014.11.1901
5.
5. T. M. Dawson and S. H. Snyder , “ Gases as biological messengers: nitric oxide and carbon monoxide in the brain,” J. Neurosci. 14, 51475159 (1994).
6.
6. R. J. P. Williams , “ Nitric oxide in biology: Its role as a ligand,” Chem. Soc. Rev. 25, 7783 (1996).
http://dx.doi.org/10.1039/cs9962500077
7.
7. M. W. Merx , A. Goedecke , U. Floegel , and J. Schrader , “ Myoglobin function reassessed,” FASEB. J. 19, 11051107 (2005).
8.
8. D. J. Garry , A. Meeson , Z. Yan , and R. S. Williams , “ Life without myoglobin,” Cell. Mol. Life Sci. 57, 896898 (2000).
http://dx.doi.org/10.1007/PL00000732
9.
9. E. De Marinis , L. Casella , C. Ciaccio , M. Coletta , P. Visca , and P. Ascenzi , “ Catalytic peroxidation of nitrogen monoxide and peroxynitrite by globins,” IUBMB Life 61, 6273 (2009).
http://dx.doi.org/10.1002/iub.149
10.
10. A. Hausladen , A. Gow , and J. S. Stamler , “ Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen,” Proc. Natl. Acad. Sci., U.S.A. 98, 1010810112 (2001).
http://dx.doi.org/10.1073/pnas.181199698
11.
11. S. Mishra and M. Meuwly , “ Atomistic simulation of no dioxygenation in group i truncated hemoglobin,” J. Am. Chem. Soc. 132, 29682982 (2010).
http://dx.doi.org/10.1021/ja9078144
12.
12. J. B. Wittenberg and B. A. Wittenberg , “ Myoglobin function reassessed,” J. Exp. Biol. 206, 20112020 (2003).
http://dx.doi.org/10.1242/jeb.00243
13.
13. H. S. Cho , N. Dashdorj , F. Schotte , T. Graber , R. Henning , and P. Anfinrud , “ Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering,” Proc. Natl. Acad. Sci., U.S.A. 107, 72817286 (2010).
http://dx.doi.org/10.1073/pnas.1002951107
14.
14. R. Neutze , “ Opportunities and challenges for time-resolved studies of protein structural dynamics at x-ray free-electron lasers,” Philos. Trans. R. Soc. Lond. B 369, 20130318 (2014).
http://dx.doi.org/10.1098/rstb.2013.0318
15.
15. K. Moffat , “ Time-resolved crystallography and protein design: signalling photoreceptors and optogenetics,” Philos. Trans. R. Soc. B 369, 20130568 (2014).
http://dx.doi.org/10.1098/rstb.2013.0568
16.
16. F. Schotte , M. Lim , T. A. Jackson , A. V. Smirnov , J. Soman , J. S. Olson , G. N. Phillips , M. Wulff , and P. A. Anfinrud , “ Watching a protein as it functions with 150-ps time-resolved x-ray crystallography,” Science 300, 19441947 (2003).
http://dx.doi.org/10.1126/science.1078797
17.
17. Q. Cui and M. Karplus , “ Allostery and cooperativity revisited,” Prot. Sci. 17, 12951307 (2008).
http://dx.doi.org/10.1110/ps.03259908
18.
18. S. Song , L. Rothberg , D. L. Rousseau , A. Boffi , and E. Chiancone , “ Metastable CO binding sites in the photoproduct of a novel cooperative dimeric hemoglobin,” Biophys. J. 65, 19591962 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81267-0
19.
19. W. E. Royer , W. A. Hendrickson , and E. Chiancone , “ Structural transitions upon ligand binding in a cooperative dimeric hemoglobin,” Science 249, 518521 (1990).
http://dx.doi.org/10.1126/science.2382132
20.
20. J. E. Knapp , M. A. Bonham , Q. H. Gibson , J. C. Nichols , and W. E. Royer , “ Residue F4 plays a key role in modulating oxygen affinity and cooperativity in Scapharca dimeric hemoglobin,” Biochemistry 44, 1441914430 (2005).
http://dx.doi.org/10.1021/bi051052+
21.
21. K. Nienhaus , J. E. Knapp , P. Palladino , W. E. Royer , and G. U. Nienhaus , “ Ligand migration and binding in the dimeric hemoglobin of scapharca inaequivalvis,” Biochemistry 46, 1401814031 (2007).
http://dx.doi.org/10.1021/bi7016798
22.
22. E. Chiancone and A. Boffi , “ Structural and thermodynamic aspects of cooperativity in the homodimeric hemoglobin from Scapharca inaequivalvis,” Biophys. Chem. 86, 173178 (2000).
http://dx.doi.org/10.1016/S0301-4622(00)00162-9
23.
23. J. Choi , S. Muniyappan , J. T. Wallis , W. E. Royer , and H. Ihee , “ Protein conformational dynamics of homodimeric hemoglobin revealed by combined time-resolved spectroscopic probes,” Chem. Phys. Chem. 11, 109114 (2010).
24.
24. Y. Zhou , H. Zhou , and M. Karplus , “ Cooperativity in Scapharca dimeric hemoglobin: Simulation of binding intermediates and elucidation of the role of interfacial water,” J. Mol. Biol. 326, 593606 (2003).
http://dx.doi.org/10.1016/S0022-2836(02)01329-3
25.
25. J. E. Knapp , R. Pahl , J. Cohen , J. C. Nichols , K. Schulten , Q. H. Gibson , V. Srajer , and W. E. Royer , “ Ligand migration and cavities within Scapharca Dimeric HbI: Studies by time-resolved crystallography, Xe binding, and computational analysis,” Structure 17, 14941504 (2009).
http://dx.doi.org/10.1016/j.str.2009.09.004
26.
26. M. Karplus and D. L. Weaver , “ Protein-folding dynamics,” Nature 260, 404406 (1976).
http://dx.doi.org/10.1038/260404a0
27.
27. M. Karplus and D. L. Weaver , “ Protein folding dynamics: The diffusion-collision model and experimental data,” Prot. Sci. 3, 650668 (1994).
http://dx.doi.org/10.1002/pro.5560030413
28.
28. C. M. Dobson and M. Karplus , “ The fundamentals of protein folding: bringing together theory and experiment,” Curr. Opin. Struct. Biol. 9, 92101 (1999).
http://dx.doi.org/10.1016/S0959-440X(99)80012-8
29.
29. D. E. Shaw , P. Maragakis , K. Lindorff-Larsen , S. Piana , R. O. Dror , M. P. Eastwood , J. A. Bank , J. M. Jumper , J. K. Salmon , Y. Shan , and W. Wriggers , “ Atomic-level characterization of the structural dynamics of proteins,” Science 330, 341346 (2010).
http://dx.doi.org/10.1126/science.1187409
30.
30. J. E. Knapp , R. Pahl , V. Šrajer , and W. E. Royer , “ Allosteric action in real time: Time-resolved crystallographic studies of a cooperative dimeric hemoglobin,” Proc. Natl. Acad. Sci., U.S.A. 103, 76497654 (2006).
http://dx.doi.org/10.1073/pnas.0509411103
31.
31. J. W. Petrich , J. C. Lambry , K. Kuczera , M. Karplus , C. Poyart , and J. L. Martin , “ Ligand binding and protein relaxation in heme proteins: A room temperature analysis of nitric oxide geminate recombination,” Biochemistry 30, 39753987 (1991).
http://dx.doi.org/10.1021/bi00230a025
32.
32. M. Meuwly , O. M. Becker , R. Stote , and M. Karplus , “ No rebinding to myoglobin: A reactive molecular dynamics study,” Biophys. Chem. 98, 183207 (2002).
http://dx.doi.org/10.1016/S0301-4622(02)00093-5
33.
33. B. R. Brooks , C. L. Brooks , A. D. Mackerell , L. Nilsson , R. J. Petrella , B. Roux , Y. Won , G. Archontis , C. Bartels , S. Boresch , A. Caflisch , L. Caves , Q. Cui , A. R. Dinner , M. Feig , S. Fischer , J. Gao , M. Hodoscek , W. Im , K. Kuczera , T. Lazaridis , J. Ma , V. Ovchinnikov , E. Paci , R. W. Pastor , C. B. Post , J. Z. Pu , M. Schaefer , B. Tidor , R. M. Venable , H. L. Woodcock , X. Wu , W. Yang , D. M. York , and M. Karplus , “ CHARMM: The biomolecular simulation program,” J. Comp. Chem. 30, 15451614 (2009).
http://dx.doi.org/10.1002/jcc.21287
34.
34. J. C. Phillips , R. Braun , W. Wang , J. Gumbart , E. Tajkhorshid , E. Villa , C. Chipot , R. D. Skeel , L. Kalé , and K. Schulten , “ Scalable molecular dynamics with NAMD,” J. Comp. Chem. 26, 1781802 (2005).
http://dx.doi.org/10.1002/jcc.20289
35.
35. J. A. D. MacKerell , D. Bashford , M. Bellott , J. R. L. Dunbrack , J. D. Evanseck , M. J. Field , S. Fischer , J. Gao , H. Guo , S. Ha , D. Joseph-McCarthy , L. Kuchnir , K. Kuczera , F. T. K. Lau , C. Mattos , S. Michnick , T. Ngo , D. T. Nguyen , B. Prodhom , W. E. Reiher , B. Roux , M. Schlenkrich , J. C. Smith , R. Stote , J. Straub , M. Watanabe , J. Wirkiewicz-Kuczera , D. Yin , and M. Karplus , “ All-atom empirical potential for molecular modeling and dynamics studies of proteins,” J. Phys. Chem. B 102, 35863616 (1998).
http://dx.doi.org/10.1021/jp973084f
36.
36. W. L. Jorgensen , J. Chandrasekhar , J. Madura , R. Impey , and M. Klein , “ Comparison of simple potential functions for simulating liquid water,” J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
37.
37. W. V. Van Gunsteren and H. J. C. Berendsen , “ Algorithms for macromolecular dynamics and constraint dynamics,” Mol. Phys. 34, 13111327 (1977).
http://dx.doi.org/10.1080/00268977700102571
38.
38. G. Torrie and J. Valleau , “ Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling,” J. Comp. Phys. 23, 187199 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90121-8
39.
39. S. Kumar , J. M. Rosenberg , D. Bouzida , R. H. Swendsen , and P. A. Kollman , “ The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method,” J. Comp. Chem. 13, 10111021 (1992).
http://dx.doi.org/10.1002/jcc.540130812
40.
40. M. Souaille and B. Roux , “ Extension to the weighted histogram analysis method: Combining umbrella sampling with free energy calculations,” Comput. Phys. Commun. 135, 4057 (2001).
http://dx.doi.org/10.1016/S0010-4655(00)00215-0
41.
41. W. E. Royer , “ High-resolution crystallographic analysis of a co-operative dimeric hemoglobin,” J. Mol. Biol. 235, 657681 (1994).
http://dx.doi.org/10.1006/jmbi.1994.1019
42.
42. J. E. Knapp and W. E. Royer , “ Ligand-linked structural transitions in crystals of a cooperative dimeric hemoglobin,” Biochemistry 42, 46404647 (2003).
http://dx.doi.org/10.1021/bi027136p
43.
43. K. H. Kim , S. Muniyappan , K. Y. Oang , J. G. Kim , S. Nozawa , T. Sato , S.-Y. Koshihara , R. Henning , I. Kosheleva , H. Ki , Y. Kim , T. W. Kim , J. Kim , S.-I. Adachi , and H. Ihee , “ Direct observation of cooperative protein structural dynamics of homodimeric hemoglobin from 100 ps to 10 ms with pump-probe X-ray solution scattering,” J. Am. Chem. Soc. 134, 70017008 (2012).
http://dx.doi.org/10.1021/ja210856v
44.
44. P. J. Steinbach , A. Ansari , J. Berendzen , D. Braunstein , K. C. Hu , B. Cowen , D. Ehrenstein , H. Frauenfelder , J. Johnson , D. C. Lamb , S. Luck , J. R. Mourant , G. U. Nienhaus , P. Ormos , R. Philipp , A. Xie , and R. Young , “ Ligand-binding to Heme-proteins—Connection between dynamics and function,” Biochemistry 30, 39884001 (1991).
http://dx.doi.org/10.1021/bi00230a026
45.
45. J. Z. Ruscio , D. Kumar , M. Shukla , M. G. Prisant , T. M. Murali , and A. V. Onufriev , “ Atomic level computational identification of ligand migration pathways between solvent and binding site in myoglobin,” Proc. Natl. Acad. Sci., U.S.A. 105, 92049209 (2008).
http://dx.doi.org/10.1073/pnas.0710825105
46.
46. N. Plattner and M. Meuwly , “ Quantifying the importance of protein conformation on ligand migration in m yoglobin,” Biophys. J. 102, 333341 (2012).
http://dx.doi.org/10.1016/j.bpj.2011.10.058
47.
47. P.-A. Cazade , G. Berezovska , and M. Meuwly , “ Coupled protein-ligand dynamics in truncated hemoglobin N from atomistic simulations and transition networks,” Biochem. Biophys. Acta 1850, 9961005 (2015).
http://dx.doi.org/10.1016/j.bbagen.2014.09.008
48.
48. P. A. Cazade , W. Zheng , D. Prada-Gracia , G. Berezovska , F. Rao , C. Clementi , and M. Meuwly , J. Chem. Phys. 142, 025103 (2015).
http://dx.doi.org/10.1063/1.4904431
49.
49. J. Cohen , A. Arkhipov , R. Braun , and K. Schulten , “ Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin,” Biophys. J. 91, 18441857 (2006).
http://dx.doi.org/10.1529/biophysj.106.085746
50.
50. J. S. Hub , M. B. Kubitzki , and B. L. de Groot , “ Spontaneous quaternary and tertiary T-R transitions of human hemoglobin in molecular dynamics simulation,” PLoS Comput. Biol. 6, e1000774 (2010).
http://dx.doi.org/10.1371/journal.pcbi.1000774
51.
51. K. Trujillo , T. Papagiannopoulos , and K. W. Olsen , “ Effects of mutations on the molecular dynamics of oxygen escape from the dimeric hemoglobin of scapharca inaequivalvis,” F1000Research, 4, 65 (2015).
52.
52. J. M. Laine , M. Amat , B. R. Morgan , W. E. Royer , and F. Massi , “ Insight into the allosteric mechanism of scapharca dimeric hemoglobin,” Biochemistry 53, 71997210 (2014).
http://dx.doi.org/10.1021/bi500591s
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/1/10.1063/1.4940228
Loading
/content/aca/journal/sdy/3/1/10.1063/1.4940228
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/1/10.1063/1.4940228
2016-02-17
2016-12-05

Abstract

The structuraldynamics of dimeric hemoglobin (HbI) from in different ligand-binding states is studied from atomistic simulations on the s time scale. The intermediates are between the fully ligand-bound (R) and ligand-free (T) states. Tertiary structural changes, such as rotation of the side chain of Phe97, breaking of the Lys96–heme salt bridge, and the Fe–Fe separation, are characterized and the water dynamics along the R-T transition is analyzed. All these properties for the intermediates are bracketed by those determined experimentally for the fully ligand-bound and ligand-free proteins, respectively. The dynamics of the two monomers is asymmetric on the 100 ns timescale. Several spontaneous rotations of the Phe97 side chain are observed which suggest a typical time scale of 50–100 ns for this process. Ligand migration pathways include regions between the B/G and C/G helices and, if observed, take place in the 100 ns time scale.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/1/1.4940228.html;jsessionid=hrVjtRzhQv47S96FfTCx3xeR.x-aip-live-03?itemId=/content/aca/journal/sdy/3/1/10.1063/1.4940228&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/1/10.1063/1.4940228&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/1/10.1063/1.4940228'
Right1,Right2,Right3,