Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Ultrafast Phenomena VII, edited by C. B. Harris, E. P. Ippen, G. A. Mourou, and A. H. Zewail ( Springer-Verlag, Berlin-Heidelberg, 1990).
2. A. H. Zewail, “ Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 56605694 (2000).
3. A. L. Sobolewski and W. Domcke, “ Ab initio studies on the photophysics of the guaninevcytosine base pair,” Phys. Chem. Chem. Phys. 6, 27632771 (2004).
4. S. Perun, A. L. Sobolewski, and W. Domcke, “ Ab initio studies on the radiationless decay mechanisms of the lowest excited singlet states of 9h-adenine,” J. Am. Chem. Soc. 127, 62576265 (2005).
5. C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, “ Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323, 14641468 (2009).
6. K. Haiser, B. P. Fingerhut, K. Heil, A. Glas, T. T. Herzog, B. M. Pilles, W. J. Schreier, W. Zinth, R. de Vivie-Riedle, and T. Carell, “ Mechanism of UV-Induced Formation of Dewar Lesions in DNA,” Angew. Chem. Int. Ed. 51, 408411 (2012).
7. L. M. Frutos, T. Andruniów, F. Santoro, N. Ferré, and M. Olivucci, “ Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry,” Proc. Natl. Acad. Sci. 104, 77647769 (2007).
8. D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “ Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440443 (2010).
9. G. Tomasello, M. J. Bearpark, M. A. Robb, G. Orlandi, and M. Garavelli, “ Significance of a zwitterionic state for fulgide photochromism: Implications for the design of mimics,” Angew. Chem. Int. Ed. 49, 29132916 (2010).
10. A. Hofmann and R. de Vivie-Riedle, “ Adiabatic approach for ultrafast quantum dynamics mediated by simultaneously active conical intersections,” Chem. Phys. Lett. 346, 299304 (2001).
11. A. M. Müller, S. Lochbrunner, W. E. Schmid, and W. Fuß, “ Low-Temperature Photochemistry of Previtamin D: A Hula-Twist Isomerization of a Triene,” Angew. Chem. Int. Ed. 37, 505507 (1998).;2-U
12. B. C. Arruda and R. J. Sension, “ Ultrafast polyene dynamics: The ring opening of 1,3-cyclohexadiene derivatives,” Phys. Chem. Chem. Phys. 16, 44394455 (2014).
13. B. P. Fingerhut, C. F. Sailer, J. Ammer, E. Riedle, and R. de Vivie-Riedle, “ Buildup and decay of the optical absorption in the ultrafast photo-generation and reaction of benzhydryl cations in solution,” J. Phys. Chem. A 116, 1106411074 (2012).
14. M. Lipson, A. A. Deniz, and K. S. Peters, “ The sub-picosecond dynamics of diphenylmethylchloride ion pairs and radical pairs,” Chem. Phys. Lett. 288, 781784 (1998).
15. L. Blancafort, F. Jolibois, M. Olivucci, and M. A. Robb, “ Potential energy surface crossings and the mechanistic spectrum for intramolecular electron transfer in organic radical cations,” J. Am. Chem. Soc. 123, 722732 (2001).
16.Conical Intersections: Electronic Structure, Dynamics & Spectroscopy, edited by W. Domcke, D. R. Yarkony, and H. Köppel ( World Scientific, Singapore, 2004).
17. P. von den Hoff, R. Siemering, M. Kowalewski, and R. de Vivie-Riedle, “ Electron dynamics and its control in molecules: From diatomics to larger molecular systems,” IEEE J. Sel. Top. Quantum Electron. 18, 119129 (2012).
18. J. Krause, K. Schafer, and K. Kulander, “ High-order harmonic generation from atoms and ions in the high intensity regime,” Phys. Rev. Lett. 68, 35353538 (1992).
19. P. Corkum, “ Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 19941997 (1993).
20. H. Kapteyn, O. Cohen, I. Christov, and M. Murnane, “ Harnessing attosecond science in the quest for coherent x-rays,” Science 317, 775778 (2007).
21. K. T. Kim, D. M. Villeneuve, and P. B. Corkum, “ Manipulating quantum paths for novel attosecond measurement methods,” Nat. Photonics 8, 187194 (2014).
22. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H.-D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, and J. Galayda, “ First lasing and operation of an ångstrom-wavelength free-electron laser,” Nat. Photonics. 4, 641647 (2010).
23. J. Ullrich, A. Rudenko, and R. Moshammer, “ Free-electron lasers: New avenues in molecular physics and photochemistry,” Annu. Rev. Phys. Chem. 63, 635660 (2012).
24. G. H. Zschornack, Handbook of X-Ray Data, 1st ed. ( Springer, Berlin, 2007).
25. P. Kukura, D. W. McCamant, and R. A. Mathies, “ Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461488 (2007).
26. K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “ Time-resolved broadband raman spectroscopies: A unified six-wave-mixing representation,” J. Chem. Phys. 139, 124113 (2013).
27. K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “ Broadband infrared and Raman probes of excited-state vibrational molecular dynamics: simulation protocols based on loop diagrams,” Phys. Chem. Chem. Phys. 15, 1234812359 (2013).
28. Y. Zhang, J. D. Biggs, W. Hua, S. Mukamel, and K. E. Dorfman, “ Three-dimensional attosecond resonant stimulated x-ray raman spectroscopy of electronic excitations in core-ionized glycine,” Phys. Chem. Chem. Phys. 16, 24323 (2014).
29. M. Tashiro, M. Ehara, H. Fukuzawa, K. Ueda, C. Buth, N. V. Kryzhevoi, and L. S. Cederbaum, “ Molecular double core hole electron spectroscopy for chemical analysis,” J. Chem. Phys. 132, 184302 (2010).
30. H. Nakamura, Nonadiabatic Transition: Concepts, Basic Theories and Applications ( World Scientific, 2012).
31.See supplementary material at for supplementary Figs. 1–18, Table 1, and Notes 1–2.[Supplementary Material]
32. D. R. Yarkony, “ Nonadiabatic quantum chemistrypast, present, and future,” Chem. Rev. 112, 481498 (2011).
33. J. C. Tully, “ Molecular dynamics with electronic transitions,” J. Chem. Phys. 93, 10611071 (1990).
34. N. Gavrilov, S. Salzmann, and C. M. Marian, “ Deactivation via ring opening: A quantum chemical study of the excited states of furan and comparison to thiophene,” Chem. Phys. 349, 269277 (2008).
35. T. Fuji, Y.-I. Suzuki, T. Horio, T. Suzuki, R. Mitrić, U. Werner, and V. Bonačić-Koutecký, “ Ultrafast photodynamics of furan,” J. Chem. Phys. 133, 234303234303–9 (2010).
36. W. Hua, J. D. Biggs, Y. Zhang, D. Healion, H. Ren, and S. Mukamel, “ Multiple core and vibronic coupling effects in attosecond stimulated x-ray raman spectroscopy,” J. Chem. Theory Comput. 9, 54795489 (2013).
37. P. Å. Malmqvist, A. Rendell, and B. O. Roos, “ The restricted active space self-consistent-field method, implemented with a split graph unitary group approach,” J. Phys. Chem. 94, 54775482 (1990).
38. R. Martin, “ Natural transition orbitals,” J. Chem. Phys. 118, 4775 (2003).
39. I. Mayer, “ Identifying a pair of interacting chromophores by using SVD transformed CIS wave functions,” Chem. Phys. Lett. 443, 420425 (2007).
40. P. Å. Malmqvist and V. Veryazov, “ The binatural orbitals of electronic transitions,” Mol. Phys. 110, 24552464 (2012).
41. M. Alagia, M. Lavollée, R. Richter, U. Ekström, V. Carravetta, D. Stranges, B. Brunetti, and S. Stranges, “ Probing the potential energy surface by high-resolution x-ray absorption spectroscopy: The umbrella motion of the core-excited CH3 free radical,” Phys. Rev. A 76, 022509 (2007).
42. T. A. A. Oliver, N. H. C. Lewis, and G. R. Fleming, “ Correlating the motion of electrons and nuclei with two-dimensional electronic vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111, 1006110066 (2014).
43. J. S. Lim and S. K. Kim, “ Experimental probing of conical intersection dynamics in the photodissociation of thioanisole,” Nat. Chem. 2, 627632 (2010).
44. T. Horio, T. Fuji, Y.-I. Suzuki, and T. Suzuki, “ Probing ultrafast internal conversion through conical intersection via time-energy map of photoelectron angular anisotropy,” J. Am. Chem. Soc. 131, 1039210393 (2009).
45. H. J. Wörner, J. B. Bertrand, B. Fabre, J. Higuet, H. Ruf, A. Dubrouil, S. Patchkovskii, M. Spanner, Y. Mairesse, V. Blanchet, E. Mvel, E. Constant, P. B. Corkum, and D. M. Villeneuve, “ Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy,” Science 334, 208212 (2011).
46. V. S. Petrović, M. Siano, J. L. White, N. Berrah, C. Bostedt, J. D. Bozek, D. Broege, M. Chalfin, R. N. Coffee, J. Cryan, L. Fang, J. P. Farrell, L. J. Frasinski, J. M. Glownia, M. Gühr, M. Hoener, D. M. P. Holland, J. Kim, J. P. Marangos, T. Martinez, B. K. McFarland, R. S. Minns, S. Miyabe, S. Schorb, R. J. Sension, L. S. Spector, R. Squibb, H. Tao, J. G. Underwood, and P. H. Bucksbaum, “ Transient x-ray fragmentation: Probing a prototypical photoinduced ring opening,” Phys. Rev. Lett. 108, 253006 (2012).
47. B. K. McFarland, J. P. Farrell, S. Miyabe, F. Tarantelli, A. Aguilar, N. Berrah, C. Bostedt, J. D. Bozek, P. H. Bucksbaum, J. C. Castagna, R. N. Coffee, J. P. Cryan, L. Fang, R. Feifel, K. J. Gaffney, J. M. Glownia, T. J. Martinez, M. Mucke, B. Murphy, A. Natan, T. Osipov, V. S. Petrovió, S. Schorb, T. Schultz, L. S. Spector, M. Swiggers, I. Tenney, S. Wang, J. L. White, W. White, and M. Gühr, “ Ultrafast x-ray auger probing of photoexcited molecular dynamics,” Nat. Commun. 5, 4235 (2014).
48. M. Barbatti, G. Granucci, M. Ruckenbauer, F. Plasser, J. Pittner, M. Persico, and H. Lischka, “ NEWTON-X: A package for Newtonian dynamics close to the crossing seam,” version 1.2, (2011).
49. M. Barbatti, G. Granucci, M. Persico, M. Ruckenbauer, M. Vazdar, M. Eckert-Maksiá, and H. Lischka, “ The on-the-fly surface-hopping program system newton-x: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems,” J. Photochem. Photobiol. A 190, 228240 (2007).
50. B. P. Fingerhut, S. Oesterling, K. Haiser, K. Heil, A. Glas, W. J. Schreier, W. Zinth, T. Carell, and R. de Vivie-Riedle, “ Oniom approach for non-adiabatic on-the-fly molecular dynamics demonstrated for the backbone controlled dewar valence isomerization,” J. Chem. Phys. 136, 204307 (2012).
51. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, MOLPRO, version 2012.1, a package of ab initio programs (2012).
52. T. H. Dunning, “ Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” J. Chem. Phys. 90, 10071023 (1989).
53. H. J. A. Jensen, P. Jørgensen, and H. Ågren, “ Efficient optimization of large scale MCSCF wave functions with a restricted step algorithm,” J. Chem. Phys. 87, 451466 (1987).
54. H. Ågren and H. J. Å. Jensen, “ An efficient method for the calculation of generalized overlap amplitudes for core photoelectron shake-up spectra,” Chem. Phys. Lett. 137, 431436 (1987).
55. H. Ågren, A. Flores-Riveros, and H. J. Å. Jensen, “ An efficient method for calculating molecular radiative intensities in the VUV and soft x-ray wavelength regions,” Phys. Scr. 40, 745 (1989).
56. H. Ågren and H. J. Å. Jensen, “ Relaxation and correlation contributions to molecular double core ionization energies,” Chem. Phys. 172, 4557 (1993).
57. I. Josefsson, K. Kunnus, S. Schreck, A. Föhlisch, F. de Groot, P. Wernet, and M. Odelius, “ Ab initio calculations of x-ray spectra: Atomic multiplet and molecular orbital effects in a multiconfigurational SCF approach to the l-edge spectra of transition metal complexes,” J. Phys. Chem. Lett. 3, 35653570 (2012).
58. P. A. Malmqvist, B. O. Roos, and B. Schimmelpfennig, “ The restricted active space (RAS) state interaction approach with spin-orbit coupling,” Chem. Phys. Lett. 357, 230240 (2002).
59. D. Duflot, J.-P. Flament, A. Giuliani, J. Heinesch, and M.-J. Hubin-Franskin, “ Core shell excitation of furan at the O1s and C1s edges: An experimental and ab initio study,” J. Chem. Phys. 119, 89468955 (2003).
60. M. H. Palmer, I. C. Walker, C. C. Ballard, and M. F. Guest, “ The electronic states of furan studied by VUV absorption, near-threshold electron energy-loss spectroscopy and ab initio multi-reference configuration interaction calculations,” Chem. Phys. 192, 111125 (1995).
61. D. C. Newbury, I. Ishii, and A. P. Hitchcock, “ Inner shell electron-energy loss spectroscopy of some heterocyclic molecules,” Can. J. Chem. 64, 11451155 (1986).
62. Z. D. Pešić, D. Rolles, I. Dumitriu, and N. Berrah, “ Fragmentation dynamics of gas-phase furan following K-shell ionization,” Phys. Rev. A 82, 013401 (2010).
63. P.-O. Löwdin, “ Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction,” Phys. Rev. 97, 14741489 (1955).
64. D. B. Cook, Handbook of Computational Quantum Chemistry ( Dover Publications, Mineola, NY, 2005), pp. 6669.
65. D. Healion, H. Wang, and S. Mukamel, “ Simulation and visualization of attosecond stimulated x-ray Raman spectroscopy signals in trans-N-methylacetamide at the nitrogen and oxygen K-edges,” J. Chem. Phys. 134, 124101 (2011).
66. J. D. Biggs, J. A. Voll, and S. Mukamel, “ Coherent nonlinear optical studies of elementary processes in biological complexes: diagrammatic techniques based on the wave function versus the density matrix,” Philos. Trans. R. Soc. A 370, 37093727 (2012).

Data & Media loading...


Article metrics loading...



Attosecond X-ray pulses are short enough to capture snapshots of molecules undergoing nonadiabatic electron and nuclear dynamics at conical intersections (CoIns). We show that a stimulated Raman probe induced by a combination of an attosecond and a femtosecond pulse has a unique temporal and spectral resolution for probing the nonadiabatic dynamics and detecting the ultrafast (∼4.5 fs) passage through a CoIn. This is demonstrated by a multiconfigurational self-consistent-field study of the dynamics and spectroscopy of the furan ring-opening reaction. Trajectories generated by surface hopping simulations were used to predict Attosecond Stimulated X-ray Raman Spectroscopy signals at reactant and product structures as well as representative snapshots along the conical intersection seam. The signals are highly sensitive to the changes in nonadiabatically coupled electronic structure and geometry.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd