Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/2/10.1063/1.4933008
1.
1. H. Siegbahn and K. Siegbahn, “ ESCA applied to liquids,” J. Electron Spectrosc. Relat. Phenom. 2, 319325 (1973).
http://dx.doi.org/10.1016/0368-2048(73)80023-4
2.
2. M. Faubel, Photoelectron Spectroscopy at Liquid Surfaces, edited by C. Ng ( World Scientific, 2000), Vol. 2.
3.
3. M. A. Brown, M. Faubel, and B. Winter, “ X-ray photo- and resonant Auger-electron spectroscopy studies of liquid water and aqueous solutions,” Annu. Rep. Sec. C 105, 174212 (2009).
http://dx.doi.org/10.1039/b803023p
4.
4. M. Faubel, B. Steiner, and J. Toennies, “ Measurement of HeI photoelectron spectra of liquid water, formamide and ethylene glycol in fast-flowing microjets,” J. Electron Spectrosc. Relat. Phenom. 95, 159169 (1998).
http://dx.doi.org/10.1016/S0368-2048(98)00208-4
5.
5. R. Weber, B. Winter, P. Schmidt, W. Widdra, I. Hertel, M. Dittmar, and M. Faubel, “ Photoemission from aqueous alkali-metal-iodide salt solutions using EUV synchrotron radiation,” J. Phys. Chem. B 108, 47294736 (2004).
http://dx.doi.org/10.1021/jp030776x
6.
6. B. Winter, R. Weber, W. Widdra, M. Dittmar, M. Faubel, and I. Hertel, “ Full valence band photoemission from liquid water using EUV synchrotron radiation,” J. Phys. Chem. A 108, 26252632 (2004).
http://dx.doi.org/10.1021/jp030263q
7.
7. R. Seidel, S. Thürmer, and B. Winter, “ Photoelectron spectroscopy meets aqueous solution: studies from a vacuum liquid microjet,” J. Phys. Chem. Lett. 2, 633641 (2011).
http://dx.doi.org/10.1021/jz101636y
8.
8. Y. Tang, H. Shen, K. Sekiguchi, N. Kurahashi, T. Mizuno, Y. Suzuki, and T. Suzuki, “ Direct measurement of vertical binding energy of a hydrated electron,” Phys. Chem. Chem. Phys. 12, 36533655 (2010).
http://dx.doi.org/10.1039/b925741a
9.
9. T. Suzuki, “ Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases,” Int. Rev. Phys. Chem. 31, 265318 (2012).
http://dx.doi.org/10.1080/0144235X.2012.699346
10.
10. A. Lübcke, F. Buchner, N. Heine, I. V. Hertel, and T. Schultz, “ Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution,” Phys. Chem. Chem. Phys. 12, 1462914634 (2010).
http://dx.doi.org/10.1039/c0cp00847h
11.
11. O. Link, E. Lugovoy, K. Siefermann, Y. Liu, M. Faubel, and B. Abel, “ Ultrafast electronic spectroscopy for chemical analysis near liquid water interfaces: concepts and applications,” Appl. Phys. A 96, 117135 (2009).
http://dx.doi.org/10.1007/s00339-009-5179-1
12.
12. M. Faubel, K. Siefermann, Y. Liu, and B. Abel, “ Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets,” Acc Chem. Res. 45, 120130 (2012).
http://dx.doi.org/10.1021/ar200154w
13.
13. Y.-I. Suzuki, K. Nishizawa, N. Kurahashi, and T. Suzuki, “ Effective attenuation length of an electron in liquid water between 10 and 600 eV,” Phys. Rev. E 90, 010302 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.010302
14.
14. E. A. Gibson, A. Paul, N. Wagner, R. Tobey, S. Backus, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “ High-order harmonic generation up to 250 eV from highly ionized argon,” Phys. Rev. Lett. 92, 033001 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.033001
15.
15. P. Siffalovic, M. Drescher, M. Spieweck, T. Wiesenthal, Y. C. Lim, R. Weidner, A. Elizarov, and U. Heinzmann, “ Laser-based apparatus for extended ultraviolet femtosecond time-resolved photoemission spectroscopy,” Rev. Sci. Instrum. 72, 3035 (2001).
http://dx.doi.org/10.1063/1.1329904
16.
16. L. Miaja-Avila, C. Lei, M. Aeschlimann, J. L. Gland, M. M. Murnane, H. C. Kapteyn, and G. Saathoff, “ Laser-assisted photoelectric effect from surfaces,” Phys. Rev. Lett. 97, 113604 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.113604
17.
17. B. H. Christensen, M. K. Raarup, and P. Balling, “ Photoemission with high-order harmonics: A tool for time-resolved core-level spectroscopy,” Nucl. Instrum. Methods Phys. Res. A 615, 114126 (2010).
http://dx.doi.org/10.1016/j.nima.2009.12.078
18.
18. F. Frank, C. Arrell, T. Witting, W. A. Okell, J. McKenna, J. S. Robinson, C. A. Haworth, D. Austin, H. Teng, I. A. Walmsley, J. P. Marangos, and J. W. G. Tisch, “ Invited review article: Technology for attosecond science,” Rev. Sci. Instrum. 83, 071101 (2012).
http://dx.doi.org/10.1063/1.4731658
19.
19. O. Link, E. Vöhringer-Martinez, E. Lugovoj, Y. Liu, K. Siefermann, M. Faubel, H. Grubmüller, R. B. Gerber, Y. Miller, and B. Abel, “ Ultrafast phase transitions in metastable water near liquid interfaces,” Faraday Discuss. 141, 6779 (2009).
http://dx.doi.org/10.1039/B811659H
20.
20. P. Wernet, J. Gaudin, K. Godehusen, O. Schwarzkopf, and W. Eberhardt, “ Femtosecond time-resolved photoelectron spectroscopy with a vacuum-ultraviolet photon source based on laser high-order harmonic generation,” Rev. Sci. Instrum. 82, 063114 (2011).
http://dx.doi.org/10.1063/1.3600901
21.
21. B. Frietsch, R. Carley, K. Döbrich, C. Gahl, M. Teichmann, O. Schwarzkopf, P. Wernet, and M. Weinelt, “ A high-order harmonic generation apparatus for time-and angle-resolved photoelectron spectroscopy,” Rev. Sci. Instrum. 84, 075106 (2013).
http://dx.doi.org/10.1063/1.4812992
22.
22. C.-T. Chiang, A. Blättermann, M. Huth, J. Kirschner, and W. Widdra, “ High-order harmonic generation at 4 MHz as a light source for time-of-flight photoemission spectroscopy,” Appl. Phys. Lett. 101, 071116 (2012).
http://dx.doi.org/10.1063/1.4746264
23.
23. C. Grazioli, C. Callegari, A. Ciavardini, M. Coreno, F. Frassetto, D. Gauthier, D. Golob, R. Ivanov, A. Kivimäki, B. Mahieu, B. Bučar, M. Merhar, P. Miotti, L. Poletto, E. Polo, B. Ressel, C. Spezzani, and G. De Ninno, “ CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science,” Rev. Sci. Instrum. 85, 023104 (2014).
http://dx.doi.org/10.1063/1.4864298
24.
24. G. L. Dakovski, Y. Li, T. Durakiewicz, and G. Rodriguez, “ Tunable ultrafast extreme ultraviolet source for time- and angle-resolved photoemission spectroscopy,” Rev. Sci. Instrum. 81, 073108 (2010).
http://dx.doi.org/10.1063/1.3460267
25.
25. F. Frassetto, C. Cacho, C. A. Froud, I. Turcu, P. Villoresi, W. A. Bryan, E. Springate, and L. Poletto, “ Single-grating monochromator for extreme-ultraviolet ultrashort pulses,” Opt. Express 19, 1916919181 (2011).
http://dx.doi.org/10.1364/OE.19.019169
26.
26. L. Poletto, P. Villoresi, E. Benedetti, F. Ferrari, S. Stagira, G. Sansone, and M. Nisoli, “ Intense femtosecond extreme ultraviolet pulses by using a time-delay-compensated monochromator,” Opt. Lett. 32, 28972899 (2007).
http://dx.doi.org/10.1364/OL.32.002897
27.
27. M. Ito, Y. Kataoka, T. Okamoto, M. Yamashita, and T. Sekikawa, “ Spatiotemporal characterization of single-order high harmonic pulses from time-compensated toroidal-grating monochromator,” Opt. Express 18, 6071 (2010).
http://dx.doi.org/10.1364/OE.18.006071
28.
28. M. Ibek, T. Leitner, A. Erko, A. Firsov, and P. Wernet, “ Monochromatizing and focussing femtosecond high-order harmonic radiation with one optical element,” Rev. Sci. Instrum. 84, 103102 (2013).
http://dx.doi.org/10.1063/1.4822114
29.
29. J. Metje, M. Borgwardt, A. Moguilevski, A. Kothe, N. Engel, M. Wilke, R. Al-Obaidi, D. Tolksdorf, A. Firsov, M. Brzhezinskaya, A. Erko, I. Yu Kiyan, and E. F. Aziz, “ Monochromatization of femtosecond XUV light pulses with the use of reflection zone plates,” Opt. Express 22, 1074710760 (2014).
http://dx.doi.org/10.1364/OE.22.010747
30.
30. C. Arrell, J. Ojeda, M. Sabbar, W. Okell, T. Witting, T. Siegel, Z. Diveki, S. Hutchinson, L. Gallmann, U. Keller, F. van Mourik, R. T. Chapman, C. Cacho, N. Rodrigues, I. C. E. Turcu, J. W. G. Tisch, E. Springate, J. P. Marangos, and M. Chergui, “ A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions,” Rev. Sci. Instrum. 85, 103117 (2014).
http://dx.doi.org/10.1063/1.4899062
31.
31. E. J. Takahashi, Y. Nabekawa, and K. Midorikawa, “ Low-divergence coherent soft X-ray source at 13 nm by high-order harmonics,” Appl. Phys. Lett. 84, 46 (2004).
http://dx.doi.org/10.1063/1.1637949
32.
32. C. Valentin, D. Douillet, S. Kazamias, T. Lefrou, G. Grillon, F. Augé, G. Mullot, P. Balcou, P. Mercére, and P. Zeitoun, “ Imaging and quality assessment of high-harmonic focal spots,” Opt. Lett. 28, 10491051 (2003).
http://dx.doi.org/10.1364/OL.28.001049
33.
33. J. M. Schins, P. Breger, P. Agostini, R. C. Constantinescu, H. G. Muller, G. Grillon, A. Antonetti, and A. Mysyrowicz, “ Observation of laser-assisted auger decay in argon,” Phys. Rev. Lett. 73, 21802183 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.2180
34.
34. T. E. Glover, R. W. Schoenlein, A. H. Chin, and C. V. Shank, “ Observation of laser assisted photoelectric effect and femtosecond high order harmonic radiation,” Phys. Rev. Lett. 76, 24682471 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.2468
35.
35. A. Bouhal, R. Evans, G. Grillon, A. Mysyrowicz, P. Breger, P. Agostini, R. Constantinescu, H. Muller, and D. Von der Linde, “ Cross-correlation measurement of femtosecond noncollinear high-order harmonics,” J. Opt. Soc. Am. B 14, 950956 (1997).
http://dx.doi.org/10.1364/JOSAB.14.000950
36.
36. W. L. Holstein, L. J. Hayes, E. M. Robinson, G. S. Laurence, and M. A. Buntine, “ Aspects of electrokinetic charging in liquid microjets,” J. Phys. Chem. B 103, 30353042 (1999).
http://dx.doi.org/10.1021/jp984336v
37.
37. N. Preissler, F. Buchner, T. Schultz, and A. Lübcke, “ Electrokinetic charging and evidence for charge evaporation in liquid microjets of aqueous salt solution,” J. Phys. Chem. B 117, 24222428 (2013).
http://dx.doi.org/10.1021/jp304773n
38.
38. N. Kurahashi, S. Karashima, Y. Tang, T. Horio, B. Abulimiti, Y. I. Suzuki, Y. Ogi, M. Oura, and T. Suzuki, “ Photoelectron spectroscopy of aqueous solutions: Streaming potentials of NaX (X= Cl, Br, and I) solutions and electron binding energies of liquid water and ,” J. Chem. Phys. 140, 174506 (2014).
http://dx.doi.org/10.1063/1.4871877
39.
39. I. V. Hertel and C.-P. Schulz, “ Molecular spectroscopy,” in Atoms, Molecules and Optical Physics 2 ( Springer, 2015), pp. 289381.
40.
40. A. Potts and W. Price, “ Photoelectron spectra and valence shell orbital structures of groups V and VI hydrides,” Proc. R. Soc. London Ser. A 326, 181197 (1972).
http://dx.doi.org/10.1098/rspa.1972.0004
41.
41. J. Reutt, L. Wang, Y. Lee, and D. Shirley, “ Molecular beam photoelectron spectroscopy and femtosecond intramolecular dynamics of H2O+ and D2O+,” J. Chem. Phys. 85, 69286939 (1986).
http://dx.doi.org/10.1063/1.451379
42.
42. S. Truong, A. Yencha, A. Juarez, S. Cavanagh, P. Bolognesi, and G. King, “ Threshold photoelectron spectroscopy of H2O and D2O over the photon energy range 12–40 eV,” Chem. Phys. 355, 183193 (2009).
http://dx.doi.org/10.1016/j.chemphys.2008.12.009
43.
43. J. Végh, “ The Shirley background revised,” J. Electron Spectrosc. Relat Phenom 151, 159164 (2006).
http://dx.doi.org/10.1016/j.elspec.2005.12.002
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/2/10.1063/1.4933008
Loading
/content/aca/journal/sdy/3/2/10.1063/1.4933008
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/2/10.1063/1.4933008
2015-10-09
2016-12-08

Abstract

A tuneable repetition rate extreme ultraviolet source (Harmonium) for time resolved photoelectron spectroscopy of liquids is presented. High harmonic generation produces 30–110 eV photons, with fluxes ranging from ∼2 × 1011 photons/s at 36 eV to ∼2 × 108 photons/s at 100 eV. Four different gratings in a time-preserving grating monochromator provide either high energy resolution (0.2 eV) or high temporal resolution (40 fs) between 30 and 110 eV. Laser assisted photoemission was used to measure the temporal response of the system. Vibrational progressions in gas phase water were measured demonstrating the ∼0.2 eV energy resolution.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/2/1.4933008.html;jsessionid=ksDfz-kNPDJA6qASd9Y1c-A8.x-aip-live-06?itemId=/content/aca/journal/sdy/3/2/10.1063/1.4933008&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/2/10.1063/1.4933008&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/2/10.1063/1.4933008'
Right1,Right2,Right3,