Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Siegbahn and K. Siegbahn, “ ESCA applied to liquids,” J. Electron Spectrosc. Relat. Phenom. 2, 319325 (1973).
2. M. Faubel, Photoelectron Spectroscopy at Liquid Surfaces, edited by C. Ng ( World Scientific, 2000), Vol. 2.
3. M. A. Brown, M. Faubel, and B. Winter, “ X-ray photo- and resonant Auger-electron spectroscopy studies of liquid water and aqueous solutions,” Annu. Rep. Sec. C 105, 174212 (2009).
4. M. Faubel, B. Steiner, and J. Toennies, “ Measurement of HeI photoelectron spectra of liquid water, formamide and ethylene glycol in fast-flowing microjets,” J. Electron Spectrosc. Relat. Phenom. 95, 159169 (1998).
5. R. Weber, B. Winter, P. Schmidt, W. Widdra, I. Hertel, M. Dittmar, and M. Faubel, “ Photoemission from aqueous alkali-metal-iodide salt solutions using EUV synchrotron radiation,” J. Phys. Chem. B 108, 47294736 (2004).
6. B. Winter, R. Weber, W. Widdra, M. Dittmar, M. Faubel, and I. Hertel, “ Full valence band photoemission from liquid water using EUV synchrotron radiation,” J. Phys. Chem. A 108, 26252632 (2004).
7. R. Seidel, S. Thürmer, and B. Winter, “ Photoelectron spectroscopy meets aqueous solution: studies from a vacuum liquid microjet,” J. Phys. Chem. Lett. 2, 633641 (2011).
8. Y. Tang, H. Shen, K. Sekiguchi, N. Kurahashi, T. Mizuno, Y. Suzuki, and T. Suzuki, “ Direct measurement of vertical binding energy of a hydrated electron,” Phys. Chem. Chem. Phys. 12, 36533655 (2010).
9. T. Suzuki, “ Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases,” Int. Rev. Phys. Chem. 31, 265318 (2012).
10. A. Lübcke, F. Buchner, N. Heine, I. V. Hertel, and T. Schultz, “ Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution,” Phys. Chem. Chem. Phys. 12, 1462914634 (2010).
11. O. Link, E. Lugovoy, K. Siefermann, Y. Liu, M. Faubel, and B. Abel, “ Ultrafast electronic spectroscopy for chemical analysis near liquid water interfaces: concepts and applications,” Appl. Phys. A 96, 117135 (2009).
12. M. Faubel, K. Siefermann, Y. Liu, and B. Abel, “ Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets,” Acc Chem. Res. 45, 120130 (2012).
13. Y.-I. Suzuki, K. Nishizawa, N. Kurahashi, and T. Suzuki, “ Effective attenuation length of an electron in liquid water between 10 and 600 eV,” Phys. Rev. E 90, 010302 (2014).
14. E. A. Gibson, A. Paul, N. Wagner, R. Tobey, S. Backus, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “ High-order harmonic generation up to 250 eV from highly ionized argon,” Phys. Rev. Lett. 92, 033001 (2004).
15. P. Siffalovic, M. Drescher, M. Spieweck, T. Wiesenthal, Y. C. Lim, R. Weidner, A. Elizarov, and U. Heinzmann, “ Laser-based apparatus for extended ultraviolet femtosecond time-resolved photoemission spectroscopy,” Rev. Sci. Instrum. 72, 3035 (2001).
16. L. Miaja-Avila, C. Lei, M. Aeschlimann, J. L. Gland, M. M. Murnane, H. C. Kapteyn, and G. Saathoff, “ Laser-assisted photoelectric effect from surfaces,” Phys. Rev. Lett. 97, 113604 (2006).
17. B. H. Christensen, M. K. Raarup, and P. Balling, “ Photoemission with high-order harmonics: A tool for time-resolved core-level spectroscopy,” Nucl. Instrum. Methods Phys. Res. A 615, 114126 (2010).
18. F. Frank, C. Arrell, T. Witting, W. A. Okell, J. McKenna, J. S. Robinson, C. A. Haworth, D. Austin, H. Teng, I. A. Walmsley, J. P. Marangos, and J. W. G. Tisch, “ Invited review article: Technology for attosecond science,” Rev. Sci. Instrum. 83, 071101 (2012).
19. O. Link, E. Vöhringer-Martinez, E. Lugovoj, Y. Liu, K. Siefermann, M. Faubel, H. Grubmüller, R. B. Gerber, Y. Miller, and B. Abel, “ Ultrafast phase transitions in metastable water near liquid interfaces,” Faraday Discuss. 141, 6779 (2009).
20. P. Wernet, J. Gaudin, K. Godehusen, O. Schwarzkopf, and W. Eberhardt, “ Femtosecond time-resolved photoelectron spectroscopy with a vacuum-ultraviolet photon source based on laser high-order harmonic generation,” Rev. Sci. Instrum. 82, 063114 (2011).
21. B. Frietsch, R. Carley, K. Döbrich, C. Gahl, M. Teichmann, O. Schwarzkopf, P. Wernet, and M. Weinelt, “ A high-order harmonic generation apparatus for time-and angle-resolved photoelectron spectroscopy,” Rev. Sci. Instrum. 84, 075106 (2013).
22. C.-T. Chiang, A. Blättermann, M. Huth, J. Kirschner, and W. Widdra, “ High-order harmonic generation at 4 MHz as a light source for time-of-flight photoemission spectroscopy,” Appl. Phys. Lett. 101, 071116 (2012).
23. C. Grazioli, C. Callegari, A. Ciavardini, M. Coreno, F. Frassetto, D. Gauthier, D. Golob, R. Ivanov, A. Kivimäki, B. Mahieu, B. Bučar, M. Merhar, P. Miotti, L. Poletto, E. Polo, B. Ressel, C. Spezzani, and G. De Ninno, “ CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science,” Rev. Sci. Instrum. 85, 023104 (2014).
24. G. L. Dakovski, Y. Li, T. Durakiewicz, and G. Rodriguez, “ Tunable ultrafast extreme ultraviolet source for time- and angle-resolved photoemission spectroscopy,” Rev. Sci. Instrum. 81, 073108 (2010).
25. F. Frassetto, C. Cacho, C. A. Froud, I. Turcu, P. Villoresi, W. A. Bryan, E. Springate, and L. Poletto, “ Single-grating monochromator for extreme-ultraviolet ultrashort pulses,” Opt. Express 19, 1916919181 (2011).
26. L. Poletto, P. Villoresi, E. Benedetti, F. Ferrari, S. Stagira, G. Sansone, and M. Nisoli, “ Intense femtosecond extreme ultraviolet pulses by using a time-delay-compensated monochromator,” Opt. Lett. 32, 28972899 (2007).
27. M. Ito, Y. Kataoka, T. Okamoto, M. Yamashita, and T. Sekikawa, “ Spatiotemporal characterization of single-order high harmonic pulses from time-compensated toroidal-grating monochromator,” Opt. Express 18, 6071 (2010).
28. M. Ibek, T. Leitner, A. Erko, A. Firsov, and P. Wernet, “ Monochromatizing and focussing femtosecond high-order harmonic radiation with one optical element,” Rev. Sci. Instrum. 84, 103102 (2013).
29. J. Metje, M. Borgwardt, A. Moguilevski, A. Kothe, N. Engel, M. Wilke, R. Al-Obaidi, D. Tolksdorf, A. Firsov, M. Brzhezinskaya, A. Erko, I. Yu Kiyan, and E. F. Aziz, “ Monochromatization of femtosecond XUV light pulses with the use of reflection zone plates,” Opt. Express 22, 1074710760 (2014).
30. C. Arrell, J. Ojeda, M. Sabbar, W. Okell, T. Witting, T. Siegel, Z. Diveki, S. Hutchinson, L. Gallmann, U. Keller, F. van Mourik, R. T. Chapman, C. Cacho, N. Rodrigues, I. C. E. Turcu, J. W. G. Tisch, E. Springate, J. P. Marangos, and M. Chergui, “ A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions,” Rev. Sci. Instrum. 85, 103117 (2014).
31. E. J. Takahashi, Y. Nabekawa, and K. Midorikawa, “ Low-divergence coherent soft X-ray source at 13 nm by high-order harmonics,” Appl. Phys. Lett. 84, 46 (2004).
32. C. Valentin, D. Douillet, S. Kazamias, T. Lefrou, G. Grillon, F. Augé, G. Mullot, P. Balcou, P. Mercére, and P. Zeitoun, “ Imaging and quality assessment of high-harmonic focal spots,” Opt. Lett. 28, 10491051 (2003).
33. J. M. Schins, P. Breger, P. Agostini, R. C. Constantinescu, H. G. Muller, G. Grillon, A. Antonetti, and A. Mysyrowicz, “ Observation of laser-assisted auger decay in argon,” Phys. Rev. Lett. 73, 21802183 (1994).
34. T. E. Glover, R. W. Schoenlein, A. H. Chin, and C. V. Shank, “ Observation of laser assisted photoelectric effect and femtosecond high order harmonic radiation,” Phys. Rev. Lett. 76, 24682471 (1996).
35. A. Bouhal, R. Evans, G. Grillon, A. Mysyrowicz, P. Breger, P. Agostini, R. Constantinescu, H. Muller, and D. Von der Linde, “ Cross-correlation measurement of femtosecond noncollinear high-order harmonics,” J. Opt. Soc. Am. B 14, 950956 (1997).
36. W. L. Holstein, L. J. Hayes, E. M. Robinson, G. S. Laurence, and M. A. Buntine, “ Aspects of electrokinetic charging in liquid microjets,” J. Phys. Chem. B 103, 30353042 (1999).
37. N. Preissler, F. Buchner, T. Schultz, and A. Lübcke, “ Electrokinetic charging and evidence for charge evaporation in liquid microjets of aqueous salt solution,” J. Phys. Chem. B 117, 24222428 (2013).
38. N. Kurahashi, S. Karashima, Y. Tang, T. Horio, B. Abulimiti, Y. I. Suzuki, Y. Ogi, M. Oura, and T. Suzuki, “ Photoelectron spectroscopy of aqueous solutions: Streaming potentials of NaX (X= Cl, Br, and I) solutions and electron binding energies of liquid water and ,” J. Chem. Phys. 140, 174506 (2014).
39. I. V. Hertel and C.-P. Schulz, “ Molecular spectroscopy,” in Atoms, Molecules and Optical Physics 2 ( Springer, 2015), pp. 289381.
40. A. Potts and W. Price, “ Photoelectron spectra and valence shell orbital structures of groups V and VI hydrides,” Proc. R. Soc. London Ser. A 326, 181197 (1972).
41. J. Reutt, L. Wang, Y. Lee, and D. Shirley, “ Molecular beam photoelectron spectroscopy and femtosecond intramolecular dynamics of H2O+ and D2O+,” J. Chem. Phys. 85, 69286939 (1986).
42. S. Truong, A. Yencha, A. Juarez, S. Cavanagh, P. Bolognesi, and G. King, “ Threshold photoelectron spectroscopy of H2O and D2O over the photon energy range 12–40 eV,” Chem. Phys. 355, 183193 (2009).
43. J. Végh, “ The Shirley background revised,” J. Electron Spectrosc. Relat Phenom 151, 159164 (2006).

Data & Media loading...


Article metrics loading...



A tuneable repetition rate extreme ultraviolet source (Harmonium) for time resolved photoelectron spectroscopy of liquids is presented. High harmonic generation produces 30–110 eV photons, with fluxes ranging from ∼2 × 1011 photons/s at 36 eV to ∼2 × 108 photons/s at 100 eV. Four different gratings in a time-preserving grating monochromator provide either high energy resolution (0.2 eV) or high temporal resolution (40 fs) between 30 and 110 eV. Laser assisted photoemission was used to measure the temporal response of the system. Vibrational progressions in gas phase water were measured demonstrating the ∼0.2 eV energy resolution.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd