Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/2/10.1063/1.4935245
1.
1. J. E. Hirsch, Phys. Rev. Lett. 87, 206402 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.206402
2.
2. J. E. Hirsch, Phys. Rev. B 65, 184502 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.184502
3.
3. J. E. Hirsch, Phys. Rev. B 65, 214510 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.214510
4.
4. J. E. Hirsch, Phys. Rev. B 66, 064507 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.064507
5.
5. J. E. Hirsch, Phys. Rev. B 67, 035103 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.035103
6.
6. F. Marsiglio, R. Teshima, and J. E. Hirsch, Phys. Rev. B 68, 224507 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.224507
7.
7. S. Kaiser, S. R. Clark, D. Nicoletti, G. Cotugno, R. I. Tobey, N. Dean, S. Lupi, H. Okamoto, T. Hasegawa, D. Jaksch, and A. Cavalleri, Sci. Rep. 4, 3823 (2014).
http://dx.doi.org/10.1038/srep03823
8.
8. R. Singla, G. Cotugno, S. Kaiser, M. Frst, M. Mitrano, H. Y. Liu, A. Cartella, C. Manzoni, H. Okamoto, T. Hasegawa, S. Clark, D. Jaksch, and A. Cavalleri, e-print arXiv:1409.1088.
9.
9. H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, and P. Werner, Rev. Mod. Phys. 86, 779 (2014).
http://dx.doi.org/10.1103/RevModPhys.86.779
10.
10. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.13
11.
11. I. G. Lang and Y. A. Firsov, Sov. Phys. JETP 16, 1301 (1962).
12.
12. P. Werner and M. Eckstein, Phys. Rev. B 88, 165108 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.165108
13.
13. H. Keiter and J. C. Kimball, Int. J. Magn. 1, 233 (1971).
14.
14. I. S. Krivenko and S. Biermann, Phys. Rev. B 91, 155149 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.155149
15.
15. M. Eckstein and P. Werner, Phys. Rev. B 82, 115115 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115115
16.
16. R. Sensarma, D. Pekker, E. Altman, E. Demler, N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, and T. Esslinger, Phys. Rev. B 82, 224302 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.224302
17.
17.If the bandwidth is 4 eV, the unit of time is 0.66 fs.
18.
18. P. Werner and M. Eckstein, Europhys. Lett. 109, 37002 (2015).
http://dx.doi.org/10.1209/0295-5075/109/37002
19.
19. M. Eckstein and P. Werner, Phys. Rev. B 84, 035122 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.035122
20.
20. K. Yonemitsu and N. Maeshima, Phys. Rev. B 79, 125118 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.125118
21.
21. D. Golez, J. Bonca, L. Vidmar, and S. A. Trugman, Phys. Rev. Lett. 109, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.236402
22.
22. J. Kogoj, L. Vidmar, M. Mierzejewski, S. A. Trugman, and J. Bonca, e-print arXiv:1509.08431.
23.
23. H. Matsueda, S. Sota, T. Tohyama, and S. Maekawa, J. Phys. Soc. Jpn. 81, 013701 (2012).
http://dx.doi.org/10.1143/JPSJ.81.013701
24.
24. N. Tsuji, T. Oka, P. Werner, and H. Aoki, Phys. Rev. Lett. 106, 236401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.236401
25.
25. D. Golez, M. Eckstein, and P. Werner, e-print arXiv:1507.07953.
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/2/10.1063/1.4935245
Loading
/content/aca/journal/sdy/3/2/10.1063/1.4935245
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/2/10.1063/1.4935245
2015-11-09
2016-12-05

Abstract

Hirsch's dynamic Hubbard model describes the effect of orbital expansion with occupancy by coupling the doublon operator to an auxiliary boson. In the Mott insulating phase, empty sites (holes) and doubly occupied orbitals (doublons) become charge carriers on top of the half-filled background. We use the nonequilibrium dynamical mean field method to study the properties of photo-doped doublons and holes in this model in the strongly correlated regime. In particular, we discuss how photodoping leads to doublon and hole populations with different effective temperatures, and we analyze the relaxation behavior as a function of the boson coupling and boson energy. In the polaronic regime, the nontrivial energy exchange between doublons, holes, and bosons can result in a negative temperature distribution for the holes.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/2/1.4935245.html;jsessionid=DIsOirnynvk_hs6OKPrABw_e.x-aip-live-02?itemId=/content/aca/journal/sdy/3/2/10.1063/1.4935245&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/2/10.1063/1.4935245&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/2/10.1063/1.4935245'
Right1,Right2,Right3,