Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. H. Benneman, “ Ultrafast dynamics in solids,” J. Phys.: Condens. Matter 16, 9951056 (2004).
2. R. W. Lee, S. J. Moon, H.-K. Chung, W. Rozmus, H. A. Baldis, G. Gregori, R. C. Cauble, O. L. Landen, J. S. Wark, A. Ng, S. J. Rose, C. L. Lewis, D. Riley, J.-C. Gauthier, and P. Audebert, “ Finite temperature dense matter studies on next-generation light sources,” J. Opt. Soc. Am. B 20, 770778 (2003).
3. D. Bejan and G. Rąseev, “ Nonequilibrium electron distribution in metals,” Phys. Rev. B 55, 42504256 (1997).
4. J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, “ Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures,” Phys. Rev. Lett. 53, 18371840 (1984).
5. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “ Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 16801683 (1987).
6. W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “ Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films,” Phys. Rev. Lett. 68, 28342837 (1992).
7. B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “ Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B 65, 214303 (2002).
8. B. Y. Mueller and B. Rethfeld, “ Relaxation dynamics in laser-excited metals under nonequilibrium conditions,” Phys. Rev. B 87, 035139 (2013).
9. M. Beye, F. Sorgenfrei, W. F. Schlotter, W. Wurth, and A. Foehlisch, “ The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons,” Proc. Natl. Acad. Sci. 107, 1677216776 (2010).
10. S. M. Vinko, U. Zastrau, S. Mazevet, J. Andreasson, S. Bajt, T. Burian, J. Chalupsky, H. N. Chapman, J. Cihelka, D. Doria, T. Döppner, S. Düsterer, T. Dzelzainis, R. R. Fäustlin, C. Fortmann, E. Förster, E. Galtier, S. H. Glenzer, S. Göde, G. Gregori, J. Hajdu, V. Hajkova, P. A. Heimann, R. Irsig, L. Juha, M. Jurek, J. Krzywinski, T. Laarmann, H. J. Lee, R. W. Lee, B. Li, K.-H. Meiwes-Broer, J. P. Mithen, B. Nagler, A. J. Nelson, A. Przystawik, R. Redmer, D. Riley, F. Rosmej, R. Sobierajski, F. Tavella, R. Thiele, J. Tiggesbäumker, S. Toleikis, T. Tschentscher, L. Vysin, T. J. Whitcher, S. White, and J. S. Wark, “ Electronic structure of an XUV photogenerated solid-density aluminum plasma,” Phys. Rev. Lett. 104, 225001 (2010).
11. A. Di Cicco, F. Bencivenga, A. Battistoni, D. Cocco, R. Cucini, F. D'Amico, S. Di Fonzo, A. Filipponi, A. Gessini, E. Giangrisostomi, R. Gunnella, C. Masciovecchio, E. Principi, and C. Svetina, “ Probing matter under extreme conditions at FERMI@Elettra: The TIMEX beamline,” Proc. SPIE 8077, 807704 (2011).
12. C. Masciovecchio, A. Battistoni, E. Giangrisostomi, F. Bencivenga, E. Principi, R. Mincigrucci, R. Cucini, A. Gessini, F. D'Amico, R. Borghes, M. Prica, V. Chenda, M. Scarcia, G. Gaio, G. Kurdi, A. Demidovich, M. B. Danailov, A. Di Cicco, A. Filipponi, R. Gunnella, K. Hatada, N. Mahne, L. Raimondi, C. Svetina, R. Godnig, A. Abrami, and M. Zangrando, “ EIS: The scattering beamline at FERMI,” J. Synchrotron Rad. 22, 553564 (2015).
13. E. Allaria, R. Appio, L. Badano, W. A. Barletta, S. Bassanese, and M. Zangrando, “ Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet,” Nat. Photonics 6, 699704 (2012).
14. E. Allaria, A. Battistoni, F. Bencivenga, R. Borghes, C. Callegari, F. Capotondi, D. Castronovo, P. Cinquegrana, D. Cocco, M. Coreno, P. Craievich, R. Cucini, F. D'Amico, M. B. Danailov, A. Demidovich, G. D. Ninno, A. D. Cicco, S. D. Fonzo, M. D. Fraia, S. D. Mitri, B. Diviacco, W. M. Fawley, E. Ferrari, A. Filipponi, L. Froehlich, A. Gessini, E. Giangrisostomi, L. Giannessi, D. Giuressi, C. Grazioli, R. Gunnella, R. Ivanov, B. Mahieu, N. Mahne, C. Masciovecchio, I. P. Nikolov, G. Passos, E. Pedersoli, G. Penco, E. Principi, L. Raimondi, R. Sergo, P. Sigalotti, C. Spezzani, C. Svetina, M. Trov, and M. Zangrando, “ Tunability experiments at the FERMI@Elettra free-electron laser,” New J. Phys. 14, 113009 (2012).
15. B. L. Henke, E. M. Gullikson, and J. C. Davis, “ X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181342 (1993).
16. S. Nannarone, F. Borgatti, A. DeLuisa, B. P. Doyle, G. C. Gazzadi, A. Giglia, P. Finetti, N. Mahne, L. Pasquali, M. Pedio, G. Selvaggi, G. Naletto, M. G. Pelizzo, and G. Tondello, “ The BEAR beamline at Elettra,” AIP Conf. Proc. 705, 450453 (2004).
17. L. C. Davis, “ Photoemission from transition metals and their compounds,” J. Appl. Phys. 59, R25R63 (1986).
18. B. I. Cho, K. Engelhorn, A. A. Correa, T. Ogitsu, C. P. Weber, H. J. Lee, J. Feng, P. A. Ni, Y. Ping, A. J. Nelson, D. Prendergast, R. W. Lee, R. W. Falcone, and P. A. Heimann, “ Electronic structure of warm dense copper studied by ultrafast x-ray absorption spectroscopy,” Phys. Rev. Lett. 106, 167601 (2011).
19. A. Mančić, A. Lévy, M. Harmand, M. Nakatsutsumi, P. Antici, P. Audebert, P. Combis, S. Fourmaux, S. Mazevet, O. Peyrusse, V. Recoules, P. Renaudin, J. Robiche, F. Dorchies, and J. Fuchs, “ Picosecond short-range disordering in isochorically heated aluminum at solid density,” Phys. Rev. Lett. 104, 035002 (2010).
20. C. Stamm, T. Kachel, N. Pontius, R. Mitzner, T. Quast, K. Holldack, S. Khan, C. Lupulescu, E. F. Aziz, M. Wietstruk, H. A. Durr, and W. Eberhardt, “ Femtosecond modification of electron localization and transfer of angular momentum in nickel,” Nat. Mater. 6, 740743 (2007).
21. J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “ Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237258 (2000).
22. N. Medvedev, U. Zastrau, E. Förster, D. O. Gericke, and B. Rethfeld, “ Short-time electron dynamics in aluminum excited by femtosecond extreme ultraviolet radiation,” Phys. Rev. Lett. 107, 165003 (2011).
23. F. Grossmann, Theoretical Femtosecond Physics, Atoms and Molecules in Strong Laser Fields ( Springer, 2008).
24. M. Ohno and G. A. van Riessen, “ Hole-lifetime width: A comparison between theory and experiment,” J. Electron Spectrosc. 128, 131 (2003).
25. E. Bévillon, J. P. Colombier, V. Recoules, and R. Stoian, “ Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study,” Phys. Rev. B 89, 115117 (2014).
26. F. Bencivenga, E. Principi, E. Giangrisostomi, R. Cucini, A. Battistoni, F. D'Amico, A. Di Cicco, S. Di Fonzo, A. Filipponi, A. Gessini, R. Gunnella, M. Marsi, L. Properzi, M. Saito, and C. Masciovecchio, “ Reflectivity enhancement in titanium by ultrafast XUV irradiation,” Sci. Rep. 4, 4952 (2014).
27. A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “ Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge x-ray absorption,” Phys. Rev. Lett. 95, 067405 (2005).
28. C. Bressler, C. Milne, V.-T. Pham, A. ElNahhas, R. M. van der Veen, W. Gawelda, S. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C. N. Borca, G. Ingold, R. Abela, and M. Chergui, “ Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(II) complex,” Science 323, 489492 (2009).

Data & Media loading...


Article metrics loading...



High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd