Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/2/10.1063/1.4937363
1.
1. J. Goodman and L. E. Brus, J. Am. Chem. Soc. 100, 74727474 (1978).
http://dx.doi.org/10.1021/ja00492a005
2.
2. T. Elsaesser and W. Kaiser, Chem. Phys. Lett. 128, 231237 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80331-1
3.
3. A. Douhal, F. Lahmani, and A. H. Zewail, Chem. Phys. 207, 477498 (1996).
http://dx.doi.org/10.1016/0301-0104(96)00067-5
4.
4. A. Weller, Z. Elektrochem. 60, 11441147 (1956).
http://dx.doi.org/10.1002/bbpc.19560600938
5.
5. A. Weller, J. React. Kinet. Mech. 1, 187213 (1961).
6.
6. P. M. Felker, W. R. Lambert, and A. H. Zewail, J. Chem. Phys. 77, 16031605 (1982).
http://dx.doi.org/10.1063/1.443943
7.
7. J. L. Herek, S. Pedersen, L. Bañares, and A. H. Zewail, J. Chem. Phys. 97, 90469061 (1992).
http://dx.doi.org/10.1063/1.463331
8.
8. C. Lu, R.-M. R. Hsieh, I. R. Lee, and P.-Y. Cheng, Chem. Phys. Lett. 310, 103110 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00717-4
9.
9. R. Srinivasan, J. S. Feenstra, S. T. Park, S. Xu, and A. H. Zewail, J. Am. Chem. Soc. 126, 22662267 (2004).
http://dx.doi.org/10.1021/ja031927c
10.
10. M. Sliwa et al., Photochem. Photobiol. Sci. 9, 661669 (2010).
http://dx.doi.org/10.1039/b9pp00207c
11.
11. P. F. Barbara, L. E. Brus, and P. M. Rentzepis, J. Am. Chem. Soc. 102, 56315635 (1980).
http://dx.doi.org/10.1021/ja00537a038
12.
12. P.-T. Chou, Y.-C. Chen, W.-S. Yu, Y.-H. Chou, C.-Y. Wei, and Y.-M. Cheng, J. Phys. Chem. A 105, 17311740 (2001).
http://dx.doi.org/10.1021/jp002942w
13.
13. J. R. Choi, S. C. Jeoung, and D. W. Cho, Bull. Korean Chem. Soc. 24, 16751679 (2003).
http://dx.doi.org/10.5012/bkcs.2003.24.11.1675
14.
14. S. Mitra, N. Tamai, and S. Mukherjee, J. Photochem. Photobiol. A 178, 7682 (2006).
http://dx.doi.org/10.1016/j.jphotochem.2005.07.002
15.
15. R. Adhikary, P. Mukherjee, T. W. Kee, and J. W. Petrich, J. Phys. Chem. B 113, 52555261 (2009).
http://dx.doi.org/10.1021/jp901234z
16.
16. O. F. Mohammed, D. Xiao, V. S. Batista, and E. T. J. Nibbering, J. Phys. Chem. A 118, 30903099 (2014).
http://dx.doi.org/10.1021/jp501612f
17.
17. S. Y. Arzhantsev, S. Takeuchi, and T. Tahara, Chem. Phys. Lett. 330, 8390 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)01087-3
18.
18. E. T. J. Nibbering, H. Fidder, and E. Pines, Annu. Rev. Phys. Chem. 56, 337367 (2005).
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141314
19.
19. K. Chevalier, A. Grün, A. Stamm, Y. Schmitt, M. Gerhards, and R. Diller, J. Phys. Chem. A 117, 1123311245 (2013).
http://dx.doi.org/10.1021/jp407252y
20.
20. L. A. Baker, M. D. Horbury, S. E. Greenough, P. M. Coulter, T. N. V. Karsili, G. M. Roberts, A. J. Orr-Ewing, M. N. R. Ashfold, and V. G. Stavros, J. Phys. Chem. Lett. 6, 13631368 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00417
21.
21. T. Arthen-Engeland, T. Bultmann, N. P. Ernsting, M. A. Rodriguez, and W. Thiel, Chem. Phys. 163, 4353 (1992).
http://dx.doi.org/10.1016/0301-0104(92)80138-L
22.
22. S. Lochbrunner, A. J. Wurzer, and E. Riedle, J. Chem. Phys. 112, 1069910702 (2000).
http://dx.doi.org/10.1063/1.481711
23.
23. N. P. Ernsting, S. A. Kovalenko, T. Senyushkina, J. Saam, and V. Farztdinov, J. Phys. Chem. A 105, 34433453 (2001).
http://dx.doi.org/10.1021/jp003298o
24.
24. S. Ameer-Beg, S. M. Ormson, R. G. Brown, P. Matousek, M. Towrie, E. T. J. Nibbering, P. Foggi, and F. V. R. Neuwahl, J. Phys. Chem. A 105, 37093718 (2001).
http://dx.doi.org/10.1021/jp0031101
25.
25. S. Lochbrunner, A. J. Wurzer, and E. Riedle, J. Phys. Chem. A 107, 1058010590 (2003).
http://dx.doi.org/10.1021/jp035203z
26.
26. M. Barbatti, A. J. A. Aquino, H. Lischka, C. Schriever, S. Lochbrunner, and E. Riedle, Phys. Chem. Chem. Phys. 11, 14061415 (2009).
http://dx.doi.org/10.1039/b814255f
27.
27. P. K. Verma, F. Koch, A. Steinbacher, P. Nuernberger, and T. Brixner, J. Am. Chem. Soc. 136, 1498114989 (2014).
http://dx.doi.org/10.1021/ja508059p
28.
28. L. A. Baker, M. D. Horbury, S. E. Greenough, M. N. R. Ashfold, and V. G. Stavros, Photochem. Photobiol. Sci. 14, 18141820 (2015).
http://dx.doi.org/10.1039/C5PP00217F
29.
29. P. K. Verma, A. Steinbacher, F. Koch, P. Nuernberger, and T. Brixner, Phys. Chem. Chem. Phys. 17, 84598466 (2015).
http://dx.doi.org/10.1039/C4CP05811A
30.
30. K. K. Smith and K. J. Kaufmann, J. Phys. Chem. 82, 22862291 (1978).
http://dx.doi.org/10.1021/j100510a006
31.
31. G. Weber and F. J. Farris, Biochemistry 18, 30753078 (1979).
http://dx.doi.org/10.1021/bi00581a025
32.
32. J. Catalan, F. Toribio, and A. U. Acuna, J. Phys. Chem. 86, 303306 (1982).
http://dx.doi.org/10.1021/j100391a034
33.
33. B. J. Schwartz, L. A. Peteanu, and C. B. Harris, J. Phys. Chem. 96, 35913598 (1992).
http://dx.doi.org/10.1021/j100188a009
34.
34. T. Fournier, S. Pommeret, J. C. Mialocq, A. Deflandre, and R. Rozot, Chem. Phys. Lett. 325, 171175 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00629-1
35.
35. A. S. Klymchenko and A. P. Demchenko, Phys. Chem. Chem. Phys. 5, 461468 (2003).
http://dx.doi.org/10.1039/b210352d
36.
36. M. D. Bilokin, V. V. Shvadchak, D. A. Yushchenko, A. S. Klymchenko, G. Duportail, Y. Mely, and V. G. Pivovarenko, Tetrahedron Lett. 50, 47144719 (2009).
http://dx.doi.org/10.1016/j.tetlet.2009.06.024
37.
37. H. S. Jung, H. J. Kim, J. Vicens, and J. S. Kim, Tetrahedron Lett. 50, 983987 (2009).
http://dx.doi.org/10.1016/j.tetlet.2008.12.026
38.
38. J. Kim, W. Heo, and T. Joo, J. Phys. Chem. B 119, 26202627 (2015).
http://dx.doi.org/10.1021/jp5088306
39.
39. J. D. Korp, I. Bernal, and T. L. Lemke, Acta Crystallogr., Sect. B: Struct. Sci. 36, 428434 (1980).
http://dx.doi.org/10.1107/S0567740880003408
40.
40. M. V. Petrova, E. E. Liepins, J. J. Paulins, I. Y. Gudele, and E. Y. Gudriniece, Izv. Acad. Nauk Latv. SSR, Ser. Khim. 1, 601609 (1987).
41.
41. E. Liepiņš, M. V. Petrova, E. Gudriniece, J. Pauliņš, and S. L. Kuznetsov, Magn. Reson. Chem. 27, 907915 (1989).
http://dx.doi.org/10.1002/mrc.1260271002
42.
42. V. Enchev, S. Bakalova, G. Ivanova, and N. Stoyanov, Chem. Phys. Lett. 314, 234238 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01160-4
43.
43. S. Angelova, V. Enchev, K. Kostova, M. Rogojerov, and G. Ivanova, J. Phys. Chem. A 111, 99019913 (2007).
http://dx.doi.org/10.1021/jp074449r
44.
44. C. H. Hassal, Experientia 6, 462464 (1950).
http://dx.doi.org/10.1007/BF02154105
45.
45. J. T. Correll, L. L. Coleman, S. Long, and R. F. Willy, Exp. Biol. Med. 80, 139143 (1952).
http://dx.doi.org/10.3181/00379727-80-19548
46.
46. A. Ahmedova, V. Mantareva, V. Enchev, and M. Mitewa, Int. J. Cosmet. Sci. 24, 103110 (2002).
http://dx.doi.org/10.1046/j.1467-2494.2002.00126.x
47.
47. S. Schott, A. Steinbacher, J. Buback, P. Nuernberger, and T. Brixner, J. Phys. B 47, 124014 (2014).
http://dx.doi.org/10.1088/0953-4075/47/12/124014
48.
48. I. H. M. van Stokkum, D. S. Larsen, and R. van Grondelle, Biochim. Biophys. Acta, Bioenerg. 1657, 82104 (2004).
http://dx.doi.org/10.1016/j.bbabio.2004.04.011
49.
49. K. M. Mullen and I. H. M. V. Stokkum, J. Stat. Software 18, 146 (2007).
http://dx.doi.org/10.18637/jss.v018.i01
50.
50. J. J. Snellenburg, S. Laptenok, R. Seger, K. M. Mullen, and I. H. M. v. Stokkum, J. Stat. Software 49, 122 (2012).
http://dx.doi.org/10.18637/jss.v049.i03
51.
51. F. Zieschang, A. Schmiedel, M. Holzapfel, K. Ansorg, B. Engels, and C. Lambert, J. Phys. Chem. C 117, 1981619831 (2013).
http://dx.doi.org/10.1021/jp404708x
52.
52. J. R. Lakowicz, Principles of Fluorescence Spectroscopy ( Springer US, New York, 2007), pp. 241242.
53.
53. M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli, J. Phys. Chem. 99, 1731117337 (1995).
http://dx.doi.org/10.1021/j100048a004
54.
54. M. Berg, J. Phys. Chem. A 102, 1730 (1998).
http://dx.doi.org/10.1021/jp9722061
55.
55. T. Elsaesser and H. Van den Akker, Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Processes in the Condensed Phase ( Springer, Netherlands, 2013), p. 77.
56.
56. R. de Vivie–Riedle, V. De Waele, L. Kurtz, and E. Riedle, J. Phys. Chem. A 107, 1059110599 (2003).
http://dx.doi.org/10.1021/jp035204r
57.
57. S. Rakshit, R. Saha, P. K. Verma, and S. K. Pal, Photochem. Photobiol. 88, 851859 (2012).
http://dx.doi.org/10.1111/j.1751-1097.2012.01140.x
58.
58. T. Elsaesser and W. Kaiser, Annu. Rev. Phys. Chem. 42, 83107 (1991).
http://dx.doi.org/10.1146/annurev.pc.42.100191.000503
59.
59. N. Sarkar, S. Takeuchi, and T. Tahara, J. Phys. Chem. A 103, 48084814 (1999).
http://dx.doi.org/10.1021/jp9906785
60.
60. P. O. J. Scherer, A. Seilmeier, and W. Kaiser, J. Chem. Phys. 83, 39483957 (1985).
http://dx.doi.org/10.1063/1.449107
61.
61. F. Laermer, T. Elsaesser, and W. Kaiser, Chem. Phys. Lett. 156, 381386 (1989).
http://dx.doi.org/10.1016/0009-2614(89)87112-X
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/2/10.1063/1.4937363
Loading
/content/aca/journal/sdy/3/2/10.1063/1.4937363
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/2/10.1063/1.4937363
2015-12-08
2016-09-29

Abstract

We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs) to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps) followed by decay (≈390 ps) to the corresponding ground state.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/2/1.4937363.html;jsessionid=A8DBwssVqwOhp7uzZ6bkeWbI.x-aip-live-02?itemId=/content/aca/journal/sdy/3/2/10.1063/1.4937363&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/2/10.1063/1.4937363&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/2/10.1063/1.4937363'
Right1,Right2,Right3,