Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. O'Regan and M. Grätzel, “ A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737740 (1991).
2. F. Schiffmann, J. VandeVondele, J. Hutter, A. Urakawa, R. Wirz, and A. Baiker, “ An atomistic picture of the regeneration process in dye sensitized solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 48304833 (2010).
3. T. Liu and A. Troisi, “ Theoretical evidence of multiple dye regeneration mechanisms in dye-sensitized solar cells,” Chem. Phys. Lett. 570, 159162 (2013).
4. A. Listorti, B. O'Regan, and J. R. Durrant, “ Electron transfer dynamics in dye-sensitized solar cells,” Chem. Mater. 23, 33813399 (2011).
5. A. Y. Anderson, P. R. F. Barnes, J. R. Durrant, and B. C. O'Regan, “ Quantifying regeneration in dye-sensitized solar cells,” J. Phys. Chem. C 115, 24392447 (2011).
6. W. M. Ward, B. H. Farnum, M. Siegler, and G. J. Meyer, “ Chloride ion-pairing with Ru(II) polypyridyl compounds in dichloromethane,” J. Phys. Chem. A 117, 88838894 (2013).
7. A. Marton, C. C. Clark, R. Srinivasan, R. E. Freundlich, A. A. Narducci Sarjeant, and G. J. Meyer, “ Static and dynamic quenching of Ru(II) polypyridyl excited states by iodide,” Inorg. Chem. 45, 362369 (2006).
8. H. Kusama and K. Sayama, “ A comparative computational study on the interactions of N719 and N749 dyes with iodine in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17, 43794387 (2015).
9. C. H. Law, S. C. Pathirana, X. O. Li, A. Y. Anderson, P. R. F. Barnes, A. Listorti, T. H. Ghaddar, and B. C. O'Regan, “ Water-based electrolytes for dye-sensitized solar cells,” Adv. Mater. 22, 45054509 (2010).
10. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. von Zelewsky, “ Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence,” Coord. Chem. Rev. 84, 85277 (1988).
11. N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, and J. K. McCusker, “ Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+,” Science 275, 5457 (1997).
12. M. Saes, C. Bressler, R. Abela, D. Grolimund, S. L. Johnson, P. A. Heimann, and M. Chergui, “ Observing photochemical transients by ultrafast x-ray absorption spectroscopy,” Phys. Rev. Lett. 90, 047403 (2003).
13. C. Daul, E. J. Baerends, and P. Vernooijs, “ A density functional study of the MLCT states of [Ru(bpy)3]2+ in D3 symmetry,” Inorg. Chem. 33, 35383543 (1994).
14. J.-L. Heully, F. Alary, and M. Boggio-Pasqua, “ Spin-orbit effects on the photophysical properties of ,” J. Chem. Phys. 131, 184308 (2009).
15. E. Ronca, F. De Angelis, and S. Fantacci, “ Time-dependent density functional theory modeling of spin-orbit coupling in ruthenium and osmium solar cell sensitizers,” J. Phys. Chem. C 118, 1706717078 (2014).
16. M. H. Stockett and S. Brøndsted Nielsen, “ Communication: Does a single CH3CN molecule attached to affect its absorption spectrum?,” J. Chem. Phys. 142, 171102 (2015).
17. M. E. Moret, I. Tavernelli, and U. Rothlisberger, “ A combined QM/MM and classical molecular dynamics study of [Ru(bpy)3]2+ in water,” J. Phys. Chem. B 113, 77377744 (2009).
18. P. Diamantis, J. F. Gonthier, I. Tavernelli, and U. Rothlisberger, “ Study of the redox properties of singlet and triplet tris(2,2′-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) in aqueous solution by full quantum and mixed quantum/classical molecular dynamics simulations,” J. Phys. Chem. B 118, 39503959 (2014).
19. M. E. Moret, I. Tavernelli, M. Chergui, and U. Rothlisberger, “ Electron localization dynamics in the triplet excited state of [Ru(bpy)3]2+ in aqueous solution,” Chem. Eur. J. 16, 58895894 (2010).
20. A. P. Lyubartsev and A. Laaksonen, “ M.DynaMix—A scalable portable parallel MD simulation package for arbitrary molecular mixtures,” Comput. Phys. Commun. 128, 565589 (2000).
21. K. Toukan and A. Rahman, “ Molecular-dynamics study of atomic motions in water,” Phys. Rev. B 31, 26432648 (1985).
22. W. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, “ Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids,” J. Am. Chem. Soc. 118, 1122511236 (1996).
23. A. M. Nikitin and A. P. Lyubartsev, “ New six-site acetonitrile model for simulations of liquid acetonitrile and its aqueous mixtures,” J. Comput. Chem. 28, 20202026 (2007).
24. K. Heinzinger, “ Computer simulations of aqueous electrolyte solutions,” Physica B+C 131, 196216 (1985).
25. H. A. Lorentz, “ Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase,” Ann. Phys. 248, 127136 (1881).
26. D. Berthelot, “ Sur le mélange des gaz,” C. R. Acad. Sci. 126, 17031706 (1889).
27. M. Tuckerman, B. J. Berne, and G. J. Martyna, “ Reversible multiple time scale molecular dynamics,” J. Chem. Phys. 97, 19902001 (1992).
28. P. P. Ewald, “ Die Berechnung optischer und elektrostatischer Gitterpotentiale,” Ann. Phys. 369, 253287 (1921).
29. S. Nosé, “ A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511519 (1984).
30. E. Wernersson and P. Jungwirth, “ Effect of water polarizability on the properties of solutions of polyvalent ions: Simulations of aqueous sodium sulfate with different force fields,” J. Chem. Theory Comput. 6, 32333240 (2010).

Data & Media loading...


Article metrics loading...



The solvation of the ruthenium(II) tris(bipyridine) ion ([Ru(bpy)]2+) is investigated with molecular dynamics simulations of lithium halide solutions in polar solvents. The anion distribution around the [Ru(bpy)]2+ complex exhibits a strong solvent dependence. In aqueous solution, the iodide ion forms a solvent shared complex with [Ru(bpy)]2+, but not in the other solvents. Between Cl and [Ru(bpy)]2+, the strong hydration of the chloride ion results in a solvent separated complex where more than one solvent molecule separates the anion from the metal center. Hence, tailored solvation properties in electrolytes is a route to influence ion-ion interactions and related electron transfer processes.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd