Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. G. Woller, J. K. Hannestad, and B. Albinsson, “ Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting,” J. Am. Chem. Soc. 135(7), 27592768 (2013).
2. N. Aratani, D. Kim, and A. Osuka, “ Discrete cyclic porphyrin arrays as artificial light-harvesting antenna,” Acc. Chem. Res. 42(12), 19221934 (2009).
3. H. L. Anderson, “ Molecular wires from the colours of life: conjugated porphyrin oligomers,” Chem. Commun. 23(23), 23232330 (1999).
4. S. R. Marder, B. Kippelen, A. K. Y. Jen, and N. Peyghambarian, “ Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications,” Nature 388(6645), 845851 (1997).
5. C. K. Yong, P. Parkinson, D. V. Kondratuk, W. H. Chen, A. Stannard, A. Summerfield, J. K. Sprafke, M. C. O'Sullivan, P. H. Beton, H. L. Anderson, and L. M. Herz, “ Ultrafast delocalization of excitation in synthetic light-harvesting nanorings,” Chem. Sci. 6(1), 181189 (2015).
6. A. Facchetti, “ pi-conjugated polymers for organic electronics and photovoltaic cell applications,” Chem. Mater. 23(3), 733758 (2011).
7. G. Sedghi, V. M. Garcia-Suarez, L. J. Esdaile, H. L. Anderson, C. J. Lambert, S. Martin, D. Bethell, S. J. Higgins, M. Elliott, N. Bennett, J. E. Macdonald, and R. J. Nichols, “ Long-range electron tunnelling in oligo-porphyrin molecular wires,” Nat. Nanotechnol. 6(8), 517523 (2011).
8. D. Kim, Multiporphyrin Arrays: Fundamentals and Applications ( CRC Press, 2012).
9. P. Parkinson, C. E. I. Knappke, N. Kamonsutthipaijit, K. Sirithip, J. D. Matichak, H. L. Anderson, and L. M. Herz, “ Ultrafast energy transfer in biomimetic multistrand nanorings,” J. Am. Chem. Soc. 136(23), 82178220 (2014).
10. P. Parkinson, D. V. Kondratuk, C. Menelaou, J. Q. Gong, H. L. Anderson, and L. M. Herz, “ Chromophores in molecular nanorings: When is a ring a ring?,” J. Phys. Chem. Lett. 5(24), 43564361 (2014).
11. T. Tanaka and A. Osuka, “ Conjugated porphyrin arrays: Synthesis, properties and applications for functional materials,” Chem. Soc. Rev. 44(4), 943969 (2015).
12. J. Yang, M. C. Yoon, H. Yoo, P. Kim, and D. Kim, “ Excitation energy transfer in multiporphyrin arrays with cyclic architectures: towards artificial light-harvesting antenna complexes,” Chem. Soc. Rev. 41(14), 48084826 (2012).
13. M. Gilbert and B. Albinsson, “ Photoinduced charge and energy transfer in molecular wires,” Chem. Soc. Rev. 44(4), 845862 (2015).
14. R. Kumble, S. Palese, V. S. Y. Lin, M. J. Therien, and R. M. Hochstrasser, “ Ultrafast dynamics of highly conjugated porphyrin arrays,” J. Am. Chem. Soc. 120(44), 1148911498 (1998).
15. I. V. Rubtsov, K. Susumu, G. I. Rubtsov, and M. J. Therien, “ Ultrafast singlet excited-state polarization in electronically asymmetric ethyne-bridged bis[(porphinato)zinc(II)] complexes,” J. Am. Chem. Soc. 125(9), 26872696 (2003).
16. T. K. Ahn, Z. S. Yoon, I. W. Hwang, J. K. Lim, H. Rhee, T. Joo, E. Sim, S. K. Kim, N. Aratani, A. Osuka, and D. Kim, “ Effect of conformational heterogeneity on excitation energy transfer efficiency in directly meso-meso linked Zn(II) porphyrin arrays,” J. Phys. Chem. B 109(22), 1122311230 (2005).
17. G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “ Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(40), 1652116526 (2011).
18. J. R. Widom, W. Lee, A. Perdomo-Ortiz, D. Rappoport, T. F. Molinski, A. Aspuru-Guzik, and A. H. Marcus, “ Temperature-dependent conformations of a membrane supported zinc porphyrin tweezer by 2D fluorescence spectroscopy,” J. Phys. Chem. A 117(29), 61716184 (2013).
19. P. Nuernberger, S. Ruetzel, and T. Brixner, “ Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. 54(39), 1136811386 (2015).
20. M. D. Fayer, “ Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem. 60, 2138 (2009).
21. H. L. Anderson, “ Conjugated porphyrin ladders,” Inorg. Chem. 33(5), 972981 (1994).
22. M. U. Winters, J. Karnbratt, M. Eng, C. J. Wilson, H. L. Anderson, and B. Albinsson, “ Photophysics of a butadiyne-linked porphyrin dimer: Influence of conformational flexibility in the ground and first singlet excited state,” J. Phys. Chem. C 111(19), 71927199 (2007).
23. F. V. A. Camargo, H. L. Anderson, S. R. Meech, and I. A. Heisler, “ Time-resolved twisting dynamics in a porphyrin dimer characterized by two-dimensional electronic spectroscopy,” J. Phys. Chem. B 119(46), 1466014667 (2015).
24. R. F. Loring, Y. J. Yan, and S. Mukamel, “ Time-resolved fluorescence and hole-burning line-shapes of solvated molecules: Longitudinal dielectric-relaxation and vibrational dynamics,” J. Chem. Phys. 87(10), 58405857 (1987).
25. U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, “ Sub-50 fs broadband absorption spectroscopy with tunable excitation: Putting the analysis of ultrafast molecular dynamics on solid ground,” Appl. Phys. B 96(2–3), 215231 (2009).
26. D. Koszelewski, A. Nowak-Krol, M. Drobizhev, C. J. Wilson, J. E. Haley, T. M. Cooper, J. Romiszewski, E. Gorecka, H. L. Anderson, A. Rebane, and D. T. Gryko, “ Synthesis and linear and nonlinear optical properties of low-melting pi-extended porphyrins,” J. Mater. Chem. C 1(10), 20442053 (2013).
27.See supplementary material at for experimental details and additional figures including: linear absorption and fluorescence spectra; evolutionary associated spectra; specific time traces comparing measured data with fit; time resolved transient absorption spectra for various excitations.[Supplementary Material]
28. H. Z. Yu, J. S. Baskin, and A. H. Zewail, “ Ultrafast dynamics of porphyrins in the condensed phase: II. Zinc tetraphenylporphyrin,” " J. Phys. Chem. A 106(42), 98459854 (2002).
29. F. V. A. Camargo, H. L. Anderson, S. R. Meech, and I. A. Heisler, “ Full characterization of vibrational coherence in a porphyrin chromophore by two-dimensional electronic spectroscopy,” J. Phys. Chem. A 119(1), 95101 (2015).
30.Infrared and Raman Spectroscopy: Methods and Applications , edited by B. Schrader ( VCH Verlagsgesellschaf, 1995).
31. M. K. Kuimova, M. Hoffmann, M. U. Winters, M. Eng, M. Balaz, I. P. Clark, H. A. Collins, S. M. Tavender, C. J. Wilson, B. Albinsson, H. L. Anderson, A. W. Parker, and D. Phillips, “ Determination of the triplet state energies of a series of conjugated porphyrin oligomers,” Photochem. Photobiol. Sci. 6(6), 675682 (2007).
32. I. H. M. van Stokkum, D. S. Larsen, and R. van Grondelle, “ Global and target analysis of time-resolved spectra,” Biochim. Biophys. Acta 1657(2–3), 82104 (2004).
33. M. D. Peeks, P. Neuhaus, and H. L. Anderson, “ Experimental and computational evaluation of the barrier to torsional rotation in a butadiyne-linked porphyrin dimer,” Phys. Chem. Chem. Phys. (in press).
34. A. Charvat, J. Assmann, B. Abel, and D. Schwarzer, “ Real-time probing of intramolecular vibrational energy redistribution and intermolecular vibrational energy transfer of selectively excited CH2I2 molecules in solution,” J. Phys. Chem. A 105(21), 50715080 (2001).

Data & Media loading...


Article metrics loading...



In this work, the timescales and mechanisms associated with the structural dynamics of butadiyne-linked porphyrin dimers are investigated through time resolved narrowband pump/broadband probe transient absorption spectroscopy. Our results confirm previous findings that the broadening is partly due to a distribution of structures with different (dihedral) angular conformations. Comparison of measurements with excitations on the red and blue sides of the Q-band unravel the ground and excited state conformational re-equilibration timescales. Further comparison to a planarized dimer, through the addition of a ligand, provides conclusive evidence for the twisting motion performed by the porphyrin dimer in solution.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd