Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/2/10.1063/1.4943766
1.
1. D. W. Oxtoby, “ Vibrational relaxation in liquids,” Annu. Rev. Phys. Chem. 32, 77 (1981).
http://dx.doi.org/10.1146/annurev.pc.32.100181.000453
2.
2. J. C. Owrutsky, D. Raftery, and R. M. Hochstrasser, “ Vibrational-relaxation dynamics in solutions,” Annu. Rev. Phys. Chem. 45, 519 (1994).
http://dx.doi.org/10.1146/annurev.pc.45.100194.002511
3.
3. A. K. Harshan, T. Yu, A. V. Soudackov, and S. Hammes-Schiffer, “ Dependence of vibronic coupling on molecular geometry and environment: Bridging hydrogen atom transfer and electron–proton transfer,” J. Am. Chem. Soc. 137, 13545 (2015).
http://dx.doi.org/10.1021/jacs.5b07327
4.
4. P. J. M. Johnson, A. Halpin, T. Morizumi, V. I. Prokhorenko, O. P. Ernst, and R. J. D. Miller, “ Local vibrational coherences drive the primary photochemistry of vision,” Nat. Chem. 7, 980 (2015).
http://dx.doi.org/10.1038/nchem.2398
5.
5. M. Delor, P. A. Scattergood, I. V. Sazanovich, A. W. Parker, G. M. Greetham, A. J. H. M. Meijer, M. Towrie, and J. A. Weinstein, “ Toward control of electron transfer in donor-acceptor molecules by bond-specific infrared excitation,” Science 346, 1492 (2014).
http://dx.doi.org/10.1126/science.1259995
6.
6. Z. Lin, C. M. Lawrence, D. Xiao, V. V. Kireev, S. S. Skourtis, J. L. Sessler, D. N. Beratan, and I. V. Rubtsov, “ Modulating unimolecular charge transfer by exciting bridge vibrations,” J. Am. Chem. Soc. 131, 18060 (2009).
http://dx.doi.org/10.1021/ja907041t
7.
7. T. L. Courtney, Z. W. Fox, K. M. Slenkamp, and M. Khalil, “ Two-dimensional vibrational-electronic spectroscopy,” J. Chem. Phys. 143, 154201 (2015).
http://dx.doi.org/10.1063/1.4932983
8.
8. T. L. Courtney, Z. W. Fox, L. Estergreen, and M. Khalil, “ Measuring coherently coupled intramolecular vibrational and charge-transfer dynamics with two-dimensional vibrational–electronic spectroscopy,” J. Phys. Chem. Lett. 6, 1286 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00356
9.
9. M. S. Lynch, K. M. Slenkamp, and M. Khalil, “ Probing non-equilibrium vibrational relaxation pathways of highly excited C≡N stretching modes following ultrafast back-electron transfer,” J. Chem. Phys. 136, 241101 (2012).
http://dx.doi.org/10.1063/1.4731882
10.
10. M. Delor, T. Keane, P. A. Scattergood, I. V. Sazanovich, G. M. Greetham, M. Towrie, A. J. H. M. Meijer, and J. A. Weinstein, “ On the mechanism of vibrational control of light-induced charge transfer in donor-bridge-acceptor assemblies,” Nat. Chem. 7, 689 (2015).
http://dx.doi.org/10.1038/nchem.2327
11.
11. M. Delor, I. V. Sazanovich, M. Towrie, and J. A. Weinstein, “ Probing and exploiting the interplay between nuclear and electronic motion in charge transfer processes,” Acc. Chem. Res. 48, 1131 (2015).
http://dx.doi.org/10.1021/ar500420c
12.
12. G. C. Walker, P. F. Barbara, S. K. Doorn, Y. Dong, and J. T. Hupp, “ Ultrafast measurements on direct photoinduced electron transfer in a mixed-valence complex,” J. Phys. Chem. 95, 5712 (1991).
http://dx.doi.org/10.1021/j100168a002
13.
13. A. Tivansky, C. Wang, and G. Walker, “ Vibrational mode coupling to ultrafast electron transfer in [(CN)(5)OsCNRu(NH3)(5)](-) studied by femtosecond infrared spectroscopy,” J. Phys. Chem. A 107, 9051 (2003).
http://dx.doi.org/10.1021/jp034274v
14.
14. C. Wang, B. K. Mohney, B. B. Akhremitchev, and G. C. Walker, “ Ultrafast infrared spectroscopy of vibrational states prepared by photoinduced electron transfer in (CN)(5)FeCNRu(NH3)(5),” J. Phys. Chem. A 104, 4314 (2000).
http://dx.doi.org/10.1021/jp993927y
15.
15. C. Wang, B. K. Mohney, R. D. Williams, V. Petrov, J. T. Hupp, and G. C. Walker, “ Solvent control of vibronic coupling upon intervalence charge transfer excitation of (CN)(5)FeCNRu(NH3)(5)- as revealed by resonance Raman and near-infrared absorption spectroscopies,” J. Am. Chem. Soc. 120, 5848 (1998).
http://dx.doi.org/10.1021/ja9736931
16.
16. S. K. Doorn, R. B. Dyer, P. O. Stoutland, and W. H. Woodruff, “ Ultrafast electron-transfer and coupled vibrational dynamics in cyanide bridged mixed-valence transition-metal dimers,” J. Am. Chem. Soc. 115, 6398 (1993).
http://dx.doi.org/10.1021/ja00067a065
17.
17. S. K. Doorn and J. T. Hupp, “ Intervalence enhanced Raman scattering from (CN)(5)RuCNRu(NH3)(5)-. A mode-by-mode assessment of the franck-condon barrier to intramolecular electron transfer,” J. Am. Chem. Soc. 111, 1142 (1989).
http://dx.doi.org/10.1021/ja00185a062
18.
18. S. K. Doorn, P. O. Stoutland, R. B. Dyer, and W. H. Woodruff, “ Picosecond infrared study of ultrafast electron-transfer and vibrational-energy relaxation in a mixed-valent ruthenium dimer,” J. Am. Chem. Soc. 114, 3133 (1992).
http://dx.doi.org/10.1021/ja00034a067
19.
19. A. E. Johnson, N. E. Levinger, D. A. V. Kliner, K. Tominaga, and P. F. Barbara, “ Ultrafast experiments on the role of vibrational modes in electron transfer,” Pure Appl. Chem. 64, 1219 (1992).
http://dx.doi.org/10.1351/pac199264091219
20.
20. K. Tominaga, D. A. V. Kliner, A. E. Johnson, N. E. Levinger, and P. F. Barbara, “ Femtosecond experiments and absolute rate calculations on intervalence electron transfer of mixed-valence compounds,” J. Chem. Phys. 98, 1228 (1993).
http://dx.doi.org/10.1063/1.464344
21.
21. M. S. Lynch, B. E. Van Kuiken, S. L. Daifuku, and M. Khalil, “ On the role of high-frequency intramolecular vibrations in ultrafast back-electron transfer reactions,” J. Phys. Chem. Lett. 2, 2252 (2011).
http://dx.doi.org/10.1021/jz200930h
22.
22. K. M. Slenkamp, M. S. Lynch, B. E. Van Kuiken, J. F. Brookes, C. C. Bannan, S. L. Daifuku, and M. Khalil, “ Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy,” J. Chem. Phys. 140, 084505 (2014).
http://dx.doi.org/10.1063/1.4866294
23.
23. R. E. Hester and E. M. Nour, “ Resonance-Raman and infrared studies of cyanide-bridged dimetal complexes,” J. Chem. Soc., Dalton Trans. 1981, 939.
http://dx.doi.org/10.1039/dt9810000939
24.
24. B. I. Swanson, “ Aspects of structure and bonding in Prussian blues - single-crystal Raman study of Mn3[Co(CN)6]2.XH2O and Cd3[Co(CN)6]2.XH2O,” Inorg. Chem. 15, 253 (1976).
http://dx.doi.org/10.1021/ic50156a002
25.
25. B. I. Swanson and J. J. Rafalko, “ Perturbation of intramolecular vibrations by strong interionic forces. Vibrational spectra and assignments for hexacyanoferrate(4-) ion and cesium magnesium hexacyanoferrate (Cs2MgFe(CN)6),” Inorg. Chem. 15, 249 (1976).
http://dx.doi.org/10.1021/ic50156a001
26.
26. D. F. Watson, H. S. Tan, E. Schreiber, C. J. Mordas, and A. B. Bocarsly, “ Femtosecond pump-probe spectroscopy of trinuclear transition metal mixed-valence complexes,” J. Phys. Chem. A 108, 3261 (2004).
http://dx.doi.org/10.1021/jp0363038
27.
27. A. Vogler and J. Kisslinger, “ Photosubstitution of pentaamminechlororuthenium(III) hexacyanoruthenate(II) following outer-sphere intervalence excitation,” J. Am. Chem. Soc. 104, 2311 (1982).
http://dx.doi.org/10.1021/ja00372a035
28.
28. M. S. Lynch, K. M. Slenkamp, M. Cheng, and M. Khalil, “ Coherent fifth-order visible–infrared spectroscopies: Ultrafast nonequilibrium vibrational dynamics in solution,” J. Phys. Chem. A 116, 7023 (2012).
http://dx.doi.org/10.1021/jp303701b
29.
29. M. Khalil, N. Demirdoven, and A. Tokmakoff, “ Vibrational coherence transfer characterized with Fourier-transform 2D IR spectroscopy,” J. Chem. Phys. 121, 362 (2004).
http://dx.doi.org/10.1063/1.1756870
30.
30. J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “ Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606 (2001).
http://dx.doi.org/10.1063/1.1398579
31.
31. Y. J. Yan and S. Mukamel, “ Photon-echoes of polyatomic-molecules in condensed phases,” J. Chem. Phys. 94, 179 (1991).
http://dx.doi.org/10.1063/1.460376
32.
32. J. Sung and R. J. Silbey, “ Four wave mixing spectroscopy for a multilevel system,” J. Chem. Phys. 115, 9266 (2001).
http://dx.doi.org/10.1063/1.1413979
33.
33. K. Kwak, D. E. Rosenfeld, and M. D. Fayer, “ Taking apart the two-dimensional infrared vibrational echo spectra: More information and elimination of distortions,” J. Chem. Phys. 128, 204505 (2008).
http://dx.doi.org/10.1063/1.2927906
34.
34. C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, “ Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water,” Science 301, 1698 (2003).
http://dx.doi.org/10.1126/science.1087251
35.
35. N. Huse, K. Heyne, J. Dreyer, E. T. J. Nibbering, and T. Elsaesser, “ Vibrational multilevel quantum coherence due to anharmonic couplings in intermolecular hydrogen bonds,” Phys. Rev. Lett. 91, 197401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.197401
36.
36. N. Huse, B. Bruner, M. Cowan, J. Dreyer, E. Nibbering, R. Miller, and T. Elsaesser, “ Anharmonic couplings underlying the ultrafast vibrational dynamics of hydrogen bonds in liquids,” Phys. Rev. Lett. 95, 147402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.147402
37.
37. P. B. Petersen, S. T. Roberts, K. Ramasesha, D. G. Nocera, and A. Tokmakoff, “ Ultrafast n-h vibrational dynamics of cyclic doubly hydrogen-bonded homo- and heterodimers,” J. Phys. Chem. B 112, 13167 (2008).
http://dx.doi.org/10.1021/jp805338h
38.
38. N. Demirdoven, M. Khalil, and A. Tokmakoff, “ Correlated vibrational dynamics revealed by two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 89, 237401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.237401
39.
39. P. Hamm, M. Lim, and R. M. Hochstrasser, “ Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10523 (1997).
http://dx.doi.org/10.1063/1.474216
40.
40. V. Lenchenkov, C. She, and T. Lian, “ Vibrational relaxation of cn stretch of pseudo-halide anions (OCN-, SCN-, and SeCN-) in polar solvents,” J. Phys. Chem. B 110, 19990 (2006).
http://dx.doi.org/10.1021/jp062326l
41.
41. G. M. Sando, Q. Zhong, and J. C. Owrutsky, “ Vibrational and rotational dynamics of cyanoferrates in solution,” J. Chem. Phys. 121, 2158 (2004).
http://dx.doi.org/10.1063/1.1767072
42.
42. D. C. Urbanek, D. Y. Vorobyev, A. L. Serrano, F. Gai, and R. M. Hochstrasser, “ The two-dimensional vibrational echo of a nitrile probe of the villin hp35 protein,” J. Phys. Chem. Lett. 1, 3311 (2010).
http://dx.doi.org/10.1021/jz101367d
43.
43. D. Weidinger, G. M. Sando, and J. C. Owrutsky, “ Vibrational dynamics of metal cyanides,” Chem. Phys. Lett. 489, 169 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.02.070
44.
44. A. Burewicz and A. Haim, “ Formation and properties of the binuclear complex (pentaammineruthenium).μ.-cyanopentacyanoferrate (1-),” Inorg. Chem. 27, 1611 (1988).
http://dx.doi.org/10.1021/ic00282a020
45.
45. B. E. Van Kuiken, M. Valiev, S. L. Daifuku, C. Bannan, M. L. Strader, H. Cho, N. Huse, R. W. Schoenlein, N. Govind, and M. Khalil, “ Simulating Ru L3-edge x-ray absorption spectroscopy with time-dependent density functional theory: Model complexes and electron localization in mixed-valence metal dimers,” J. Phys. Chem. A 117, 4444 (2013).
http://dx.doi.org/10.1021/jp401020j
46.
46. K. Ohta, H. Maekawa, and K. Tominaga, “ Vibrational population relaxation and dephasing dynamics of Fe(CN)64- in D2O with third-order nonlinear infrared spectroscopy,” J. Phys. Chem. A 108, 1333 (2004).
http://dx.doi.org/10.1021/jp0369847
47.
47. K. Ohta, J. Tayama, S. Saito, and K. Tominaga, “ Vibrational frequency fluctuation of ions in aqueous solutions studied by three-pulse infrared photon echo method,” Acc. Chem. Res. 45, 1982 (2012).
http://dx.doi.org/10.1021/ar300017h
48.
48. J. F. Brookes, K. M. Slenkamp, M. S. Lynch, and M. Khalil, “ Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an Fe(II) complex revealed by 2D IR spectroscopy,” J. Phys. Chem. A 117, 6234 (2013).
http://dx.doi.org/10.1021/jp4005345
49.
49. J. B. Asbury, T. Steinel, C. Stromberg, S. A. Corcelli, C. P. Lawrence, J. L. Skinner, and M. D. Fayer, “ Water dynamics: Vibrational echo correlation spectroscopy and comparison to molecular dynamics simulations,” J. Phys. Chem. A 108, 1107 (2004).
http://dx.doi.org/10.1021/jp036266k
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/2/10.1063/1.4943766
Loading
/content/aca/journal/sdy/3/2/10.1063/1.4943766
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/2/10.1063/1.4943766
2016-03-15
2016-12-02

Abstract

Using polarization-selective two-dimensional infrared (2D IR) and infrared pump-probe spectroscopies, we study vibrational relaxation of the four cyanide stretching (ν) vibrations found in [(NH)RuIIINCFeII(CN)] (FeRu) dissolved in DO or formamide and [(NC)FeIICNPtIV(NH)NCFeII(CN)]4− (FePtFe) dissolved in DO. These cyanide-bridged transition metal complexes serve as models for understanding the role high frequency vibrational modes play in metal-to-metal charge transfers over a bridging ligand. However, there is currently little information about vibrational relaxation and dephasing dynamics of the anharmonically coupled ν modes in the electronic ground state of these complexes. IR pump-probe experiments reveal that the vibrational lifetimes of the ν modes are ∼2 times faster when FeRu is dissolved in DO versus formamide. They also reveal that the vibrational lifetimes of the ν modes of FePtFe in DO are almost four times as long as for FeRu in DO. Combined with mode-specific relaxation dynamics measured from the 2D IR experiments, the IR pump-probe experiments also reveal that intramolecular vibrational relaxation is occurring in all three systems on ∼1 ps timescale. Center line slope dynamics, which have been shown to be a measure of the frequency-frequency correlation function, reveal that the radial, axial, and trans ν modes exhibit a ∼3 ps timescale for frequency fluctuations. This timescale is attributed to the forming and breaking of hydrogen bonds between each mode and the solvent. The results presented here along with our previous work on FeRu and FePtFe reveal a picture of coupled anharmonic ν modes where the spectraldiffusion and vibrational relaxation dynamics depend on the spatial localization of the mode on the molecular complex and its specific interaction with the solvent.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/2/1.4943766.html;jsessionid=L3n3WOSm2hWYh8YszxsPwG5S.x-aip-live-03?itemId=/content/aca/journal/sdy/3/2/10.1063/1.4943766&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/2/10.1063/1.4943766&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/2/10.1063/1.4943766'
Right1,Right2,Right3,