Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/2/10.1063/1.4947098
1.
1. C. Pellegrini, A. Marinelli, and S. Reiche, “ The physics of x-ray free-electron lasers,” Rev. Mod. Phys. 88, 015006 (2016).
http://dx.doi.org/10.1103/RevModPhys.88.015006
2.
2. J. Tenboer, S. Basu, N. Zatsepin, K. Pande, D. Milathianaki, M. Frank, M. Hunter, S. Boutet, G. J. Williams, J. E. Koglin, D. Oberthuer, M. Heymann, C. Kupitz, C. Conrad, J. Coe, S. Roy-Chowdhury, U. Weierstall, D. James, D. Wang, T. Grant, A. Barty, O. Yefanov, J. Scales, C. Gati, C. Seuring, V. Srajer, R. Henning, P. Schwander, R. Fromme, A. Ourmazd, K. Moffat, J. J. Van Thor, J. C. H. Spence, P. Fromme, H. N. Chapman, and M. Schmidt, “ Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein,” Science 346, 12421246 (2014).
http://dx.doi.org/10.1126/science.1259357
3.
3. J. N. Clark, L. Beitra, G. Xiong, A. Higginbotham, D. M. Fritz, H. T. Lemke, D. Zhu, M. Chollet, G. J. Williams, M. Messerschmidt, B. Abbey, R. J. Harder, A. M. Korsunsky, J. S. Wark, and I. K. Robinson, “ Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals,” Science 341, 5659 (2013).
http://dx.doi.org/10.1126/science.1236034
4.
4. R. G. Moore, W. S. Lee, P. S. Kirchman, Y. D. Chuang, A. F. Kemper, M. Trigo, L. Patthey, D. H. Lu, O. Krupin, M. Yi, D. A. Reis, D. Doering, P. Denes, W. F. Schlotter, J. J. Turner, G. Hays, P. Hering, T. Benson, J.-H. Chu, T. P. Devereaux, I. R. Fisher, Z. Hussain, and Z.-X. Shen, “ Ultrafast resonant soft x-ray diffraction dynamics of the charge density wave in tbte3,” Phys. Rev. B 93, 024304 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.024304
5.
5. E. Ruska, “ The development of the electron microscope and of electron microscopy,” in Nobel Lecture, 1986.
6.
6. H. Ihee, J. Cao, and A. H. Zewail, “ Ultrafast electron diffraction: structures in dissociation dynamics of fe(co)5,” Chem. Phys. Lett. 281, 1019 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)01167-6
7.
7. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “ An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 13821385 (2003).
http://dx.doi.org/10.1126/science.1090052
8.
8. R. P. Chatelain, V. R. Morrison, B. L. M. Klarenaar, and B. J. Siwick, “ Coherent and incoherent electron-phonon coupling in graphite observed with radio-frequency compressed ultrafast electron diffraction,” Phys. Rev. Lett. 113, 235502 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.235502
9.
9. R. C. Dudek and P. M. Weber, “ Ultrafast diffraction imaging of the electrocyclic ring-opening reaction of 1,3-cyclohexadiene,” J. Phys. Chem. A 105, 41674171 (2001).
http://dx.doi.org/10.1021/jp010122t
10.
10. J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian, R. E. Jordan, and R. Dwayne Miller, “ Femtosecond electron diffraction: ‘making the molecular movie,’ ” Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci. 364, 741778 (2006).
http://dx.doi.org/10.1098/rsta.2005.1735
11.
11. M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schfer, and C. Ropers, “ Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200204 (2014).
http://dx.doi.org/10.1126/science.1250658
12.
12. A. A. Ishchenko, S. A. Aseyev, V. N. Bagratashvili, V. Y. Panchenko, and E. A. Ryabov, “ Ultrafast electron diffraction and electron microscopy: present status and future prospects,” Phys.-Usp. 57, 633 (2014).
http://dx.doi.org/10.3367/UFNe.0184.201407a.0681
13.
13. S. Lahme, C. Kealhofer, F. Krausz, and P. Baum, “ Femtosecond single-electron diffraction,” Struct. Dyn. 1, 034303 (2014).
http://dx.doi.org/10.1063/1.4884937
14.
14. M. Ligges, C. Streubohr, T. Brazda, O. Posth, C. Hassel, G. Dumpich, P. Zhou, and D. von der Linde, in Observation of Ultrafast Lattice Heating in Thin Metal Films Using Time-Resolved Electron Diffraction, edited by A. M. Lindenberg, D. Reis, P. Fuoss, T. Tschentscher, and B. S. Siwick ( Mater. Res. Soc. Symp. Proc., 2009), Vol. 1230.
15.
15. R. Srinivasan, V. Lobastov, C.-Y. Ruan, and A. Zewail, “ Ultrafast electron diffraction (UED),” Helv. Chim. Acta 86, 17611799 (2003).
http://dx.doi.org/10.1002/hlca.200390147
16.
16. M. S. Robinson, P. D. Lane, and D. A. Wann, “ A compact electron gun for time-resolved electron diffraction,” Rev. Sci. Instrum. 86, 013109 (2015).
http://dx.doi.org/10.1063/1.4905335
17.
17. M. S. Robinson, P. D. Lane, and D. A. Wann, “ Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer,” J. Phys. B: At. Mol. Opt. Phys. 49, 034003 (2016).
http://dx.doi.org/10.1088/0953-4075/49/3/034003
18.
18. C. Gerbig, A. Senftleben, S. Morgenstern, C. Sarpe, and T. Baumert, “ Spatio-temporal resolution studies on a highly compact ultrafast electron diffractometer,” New J. Phys. 17, 043050 (2015).
http://dx.doi.org/10.1088/1367-2630/17/4/043050
19.
19. L. Waldecker, R. Bertoni, and R. Ernstorfer, “ Compact femtosecond electron diffractometer with 100 kev electron bunches approaching the single-electron pulse duration limit,” J. Appl. Phys. 117, 044903 (2015).
http://dx.doi.org/10.1063/1.4906786
20.
20. M. W. van Mourik, W. J. Engelen, E. J. D. Vredenbregt, and O. J. Luiten, “ Ultrafast electron diffraction using an ultracold source,” Struct. Dyn. 1, 034302 (2014).
http://dx.doi.org/10.1063/1.4882074
21.
21. W. J. Engelen, E. P. Smakman, D. J. Bakker, O. J. Luiten, and E. J. D. Vredenbregt, “ Effective temperature of an ultracold electron source based on near-threshold photoionization,” Ultramicroscopy 136, 7380 (2014).
http://dx.doi.org/10.1016/j.ultramic.2013.07.017
22.
22. W. J. Engelen, M. A. van der Heijden, D. J. Bakker, E. J. D. Vredenbregt, and O. J. Luiten, “ High-coherence electron bunches produced by femtosecond photoionization,” Nat. Commun. 4, 1693 (2013).
http://dx.doi.org/10.1038/ncomms2700
23.
23. A. J. McCulloch, D. V. Sheludko, M. Junker, and R. E. Scholten, “ High-coherence picosecond electron bunches from cold atoms,” Nat. Commun. 4, 1692 (2013).
http://dx.doi.org/10.1038/ncomms2699
24.
24. A. J. McCulloch, D. V. Sheludko, S. D. Saliba, S. C. Bell, M. Junker, K. A. Nugent, and R. E. Scholten, “ Arbitrarily shaped high-coherence electron bunches from cold atoms,” Nat. Phys. 7, 785788 (2011).
http://dx.doi.org/10.1038/nphys2052
25.
25. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “ Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.043907
26.
26. G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “ Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190193 (2012).
http://dx.doi.org/10.1038/nature10878
27.
27. M. Muller, A. Paarmann, and R. Ernstorfer, “ Femtosecond electrons probing currents and atomic structure in nanomaterials,” Nat. Commun. 5, 5292 (2014).
http://dx.doi.org/10.1038/ncomms6292
28.
28. M. Schenk, M. Krüger, and P. Hommelhoff, “ Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.257601
29.
29. P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “ Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97, 247402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.247402
30.
30. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “ Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.077401
31.
31. M. Kruger, M. Schenk, M. Forster, and P. Hommelhoff, “ Attosecond physics in photoemission from a metal nanotip,” J. Phys. B: At., Mol. Opt. Phys. 45, 074006 (2012).
http://dx.doi.org/10.1088/0953-4075/45/7/074006
32.
32. J. Hoffrogge, J. Paul Stein, M. Krger, M. Frster, J. Hammer, D. Ehberger, P. Baum, and P. Hommelhoff, “ Tip-based source of femtosecond electron pulses at 30 kev,” J. Appl. Phys. 115, 094506 (2014).
http://dx.doi.org/10.1063/1.4867185
33.
33. P. Baum, “ Towards ultimate temporal and spatial resolutions with ultrafast single-electron diffraction,” J. Phys. B: At. Mol. Opt. Phys. 47, 124005 (2014).
http://dx.doi.org/10.1088/0953-4075/47/12/124005
34.
34. E. Quinonez, J. Handali, and B. Barwick, “ Femtosecond photoelectron point projection microscope,” Rev. Sci. Instrum. 84, 103710 (2013).
http://dx.doi.org/10.1063/1.4827035
35.
35. J.-N. Longchamp, T. Latychevskaia, C. Escher, and H.-W. Fink, “ Graphene unit cell imaging by holographic coherent diffraction,” Phys. Rev. Lett. 110, 255501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.255501
36.
36. J.-N. Longchamp, T. Latychevskaia, C. Escher, and H.-W. Fink, “ Low-energy electron transmission imaging of clusters on free-standing graphene,” Appl. Phys. Lett. 101, 113117 (2012).
http://dx.doi.org/10.1063/1.4752717
37.
37. B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, and H. Batelaan, “ Laser-induced ultrafast electron emission from a field emission tip,” New J. Phys. 9, 142 (2007).
http://dx.doi.org/10.1088/1367-2630/9/5/142
38.
38. T. Latychevskaia, J.-N. Longchamp, C. Escher, and H.-W. Fink, “ On artefact-free reconstruction of low-energy (30–250 eV) electron holograms,” Ultramicroscopy 145, 2227 (2014).
http://dx.doi.org/10.1016/j.ultramic.2013.11.012
39.
39. M. Müller, V. Kravtsov, A. Paarmann, M. B. Raschke, and R. Ernstorfer, “ A nanofocused plasmon-driven sub-10 femtosecond electron point source,” ACS Photonics, 10.1021/acsphotonics.5b00710.
http://dx.doi.org/10.1021/acsphotonics.5b00710
40.
40. A. R. Bainbridge and W. A. Bryan, “ Velocity map imaging of femtosecond laser induced photoelectron emission from metal nanotips,” New J. Phys. 16, 103031 (2014).
http://dx.doi.org/10.1088/1367-2630/16/10/103031
41.
41. B. Siwick, J. Dwyer, R. Jordan, and R. Miller, “ Ultrafast electron optics: Propagation dynamics of femtosecond electron packets,” J. Appl. Phys. 92, 16431648 (2002).
http://dx.doi.org/10.1063/1.1487437
42.
42. T. L. Gilton, J. P. Cowin, G. D. Kubiak, and A. V. Hamza, “ Intense surface photoemission: Space charge effects and self-acceleration,” J. Appl. Phys. 68, 48024810 (1990).
http://dx.doi.org/10.1063/1.346137
43.
43. S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, and M. Bauer, “ Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source,” J. Appl. Phys. 100, 024912 (2006).
http://dx.doi.org/10.1063/1.2217985
44.
44. F. Smann, M. F. Kling, and P. Hommelhoff, “ From attosecond control of electrons at nano-objects to laser-driven electron accelerators,” in Attosecond Nanophysics ( Wiley-VCH Verlag GmbH, 2014), pp. 155196.
45.
45. A. Schiffrin, T. Paasch-Colberg, and M. Schultze, “ Controlling and tracking electric currents with light,” in Attosecond Nanophysics ( Wiley-VCH Verlag GmbH, 2014), pp. 235280.
46.
46. C. Lienau, M. Raschke, and C. Ropers, “ Ultrafast nano-focusing for imaging and spectroscopy with electrons and light,” in Attosecond Nanophysics ( Wiley-VCH Verlag GmbH, 2014), pp. 281324.
47.
47. S. H. Chew, K. Pearce, C. Spth, A. Guggenmos, J. Schmidt, F. Smann, M. F. Kling, U. Kleineberg, E. Mrsell, C. L. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L'Huillier, and A. Mikkelsen, “ Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopyatto-peem,” in Attosecond Nanophysics ( Wiley-VCH Verlag GmbH, 2014), pp. 325364.
48.
48. A. Arbouet, F. Houdellier, R. Marty, and C. Girard, “ Interaction of an ultrashort optical pulse with a metallic nanotip: A Green dyadic approach,” J. Appl. Phys. 112, 053102 (2012).
http://dx.doi.org/10.1063/1.4747840
49.
49. S. Thomas, G. Wachter, C. Lemell, J. Burgdoerfer, and P. Hommelhoff, “ Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17, 063010 (2015).
http://dx.doi.org/10.1088/1367-2630/17/6/063010
50.
50. H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Greber, M. Hengsberger, and J. Osterwalder, “ Optical control of field-emission sites by femtosecond laser pulses,” Phys. Rev. Lett. 103, 257603 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.257603
51.
51. H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Greber, J. Osterwalder, and M. Hengsberger, “ Laser-induced field emission from a tungsten tip: Optical control of emission sites and the emission process,” Phys. Rev. B 81, 115429 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115429
52.
52. S. van der Geer, O. Luiten, M. de Loos, G. Poplau, and U. van Rienen, “ 3D space-charge model for GPT simulations of high-brightness electron bunches,” in Computational Accelerator Physics 2002, Institute of Physics Conference Series Vol. 175, edited by M. Berz and K. Makino (2005), pp. 101110; 7th International Conference on Computational Accelerator Physics, Michigan State University, E. Lansing, MI, October 15–18, 2002.
53.
53. C. T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, T. Dartigalongue, S. G. Kruglik, and R. J. D. Miller, “ Grating enhanced ponderomotive scattering for visualization and full characterization of femtosecond electron pulses,” Opt. Express 16, 33343341 (2008).
http://dx.doi.org/10.1364/OE.16.003334
54.
54. G. H. Kassier, K. Haupt, N. Erasmus, E. G. Rohwer, H. M. von Bergmann, H. Schwoerer, S. M. M. Coelho, and F. D. Auret, “ A compact streak camera for 150 fs time resolved measurement of bright pulses in ultrafast electron diffraction,” Rev. Sci. Instrum. 81, 105103 (2010).
http://dx.doi.org/10.1063/1.3489118
55.
55. T. van Oudheusden, P. L. E. M. Pasmans, S. B. van der Geer, M. J. de Loos, M. J. van der Wiel, and O. J. Luiten, “ Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction,” Phys. Rev. Lett. 105, 264801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.264801
56.
56. A. Rakic, A. Djurisic, J. Elazar, and M. Majewski, “ Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 52715283 (1998).
http://dx.doi.org/10.1364/AO.37.005271
57.
57. J. Weaver, C. Olson, and D. Lynch, “ Optical-properties of crystalline tungsten,” Phys. Rev. B 12, 12931297 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.1293
58.
58. F. Salvat, A. Jablonski, and C. Powell, “ ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules,” Comput. Phys. Commun. 165, 157190 (2005).
http://dx.doi.org/10.1016/j.cpc.2004.09.006
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/2/10.1063/1.4947098
Loading
/content/aca/journal/sdy/3/2/10.1063/1.4947098
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/2/10.1063/1.4947098
2016-04-20
2016-12-06

Abstract

Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM) in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs) combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/2/1.4947098.html;jsessionid=1CJvumevTA3tK12xYVTc1I36.x-aip-live-03?itemId=/content/aca/journal/sdy/3/2/10.1063/1.4947098&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/2/10.1063/1.4947098&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/2/10.1063/1.4947098'
Right1,Right2,Right3,