Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Tenboer, S. Basu, N. Zatsepin, K. Pande, D. Milathianaki, M. Frank, M. Hunter, S. Boutet, G. J. Williams, J. E. Koglin, D. Oberthuer, M. Heymann, C. Kupitz, C. Conrad, J. Coe, S. Roy-Chowdhury, U. Weierstall, D. James, D. Wang, T. Grant, A. Barty, O. Yefanov, J. Scales, C. Gati, C. Seuring, V. Srajer, R. Henning, P. Schwander, R. Fromme, A. Ourmazd, K. Moffat, J. J. Van Thor, J. C. H. Spence, P. Fromme, H. N. Chapman, and M. Schmidt, “ Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein,” Science 346, 12421246 (2014).
2. T. R. M. Barends, L. Foucar, A. Ardevol, K. Nass, A. Aquila, S. Botha, R. B. Doak, K. Falahati, E. Hartmann, M. Hilpert, M. Heinz, M. C. Hoffmann, J. Kfinger, J. E. Koglin, G. Kovacsova, M. Liang, D. Milathianaki, H. Lemke, J. Reinstein, C. M. Roome, R. L. Shoeman, G. J. Williams, I. Burghardt, G. Hummer, S. Boutet, and I. Schlichting, “ Direct observation of ultrafast collective motions in co myoglobin upon ligand dissociation,” Science 350, 445450 (2015).
3. W. Zhang, R. Alonso-Mori, U. Bergmann, C. Bressler, M. Chollet, A. Galler, W. Gawelda, R. G. Hadt, R. W. Hartsock, T. Kroll, K. S. Kjær, K. Kubiček, H. T. Lemke, H. W. Liang, D. A. Meyer, M. M. Nielsen, C. Purser, J. S. Robinson, E. I. Solomon, Z. Sun, D. Sokaras, T. B. van Driel, G. Vankó, T.-C. Weng, D. Zhu, and K. J. Gaffney, “ Tracking excited-state charge and spin dynamics in iron coordination complexes,” Nature 509, 345348 (2014).
4. C. Bressler, C. Milne, V.-T. Pham, A. Elnahhas, R. M. van der Veen, W. Gawelda, S. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C. N. Borca, G. Ingold, R. Abela, and M. Chergui, “ Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(II) complex,” Science 323, 489492 (2009).
5. L. X. Chen, “ Probing transient molecular structures in photochemical processes using laser-initiated time-resolved x-ray absorption spectroscopy,” Ann. Rev. Phys. Chem. 56, 221254 (2005).
6. M. Beye, P. Wernet, C. Schler-Langeheine, and A. Fhlisch, “ Time resolved resonant inelastic x-ray scattering: A supreme tool to understand dynamics in solids and molecules,” J. Electron Spectrosc. Relat. Phenom. 188, 172182 (2013).
7. P. Wernet, K. Kunnus, I. Josefsson, I. Rajkovic, W. Quevedo, M. Beye, S. Schreck, S. Grübel, M. Scholz, D. Nordlund, W. Zhang, R. W. Hartsock, W. F. Schlotter, J. J. Turner, B. Kennedy, F. Hennies, F. M. F. de Groot, K. J. Gaffney, S. Techert, M. Odelius, and A. Föhlisch, “ Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution,” Nature 520, 7881 (2015).
8. L. Perfetti, P. Loukakos, M. Lisowski, U. Bovensiepen, H. Eisaki, and M. Wolf, “ Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2 by time-resolved photoelectron spectroscopy,” Phys. Rev. Lett. 99, 197001 (2007).
9. A. Pietzsch, A. Fhlisch, M. Beye, M. Deppe, F. Hennies, M. Nagasono, E. Suljoti, W. Wurth, C. Gahl, K. Dbrich, and A. Melnikov, “ Towards time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers,” New J. Phys. 10, 033004 (2008).
10. B. K. McFarland, J. P. Farrell, S. Miyabe, F. Tarantelli, A. Aguilar, N. Berrah, C. Bostedt, J. D. Bozek, P. H. Bucksbaum, J. C. Castagna, R. N. Coffee, J. P. Cryan, L. Fang, R. Feifel, K. J. Gaffney, J. M. Glownia, T. J. Martinez, M. Mucke, B. Murphy, A. Natan, T. Osipov, V. S. Petrović, S. Schorb, T. Schultz, L. S. Spector, M. Swiggers, I. Tenney, S. Wang, J. L. White, W. White, and M. Gühr, “ Ultrafast X-ray Auger probing of photoexcited molecular dynamics,” Nat. Commun. 5, 4235 (2014).
11. S. B. Zhang and N. Rohringer, “ Quantum beat Auger spectroscopy,” Phys. Rev. A 92, 043420 (2015).
12. J. Kern, R. Alonso-Mori, R. Tran, J. Hattne, R. J. Gildea, N. Echols, C. Glöckner, J. Hellmich, H. Laksmono, R. G. Sierra, B. Lassalle-Kaiser, S. Koroidov, A. Lampe, G. Han, S. Gul, D. Difiore, D. Milathianaki, A. R. Fry, A. Miahnahri, D. W. Schafer, M. Messerschmidt, M. M. Seibert, J. E. Koglin, D. Sokaras, T.-C. Weng, J. Sellberg, M. J. Latimer, R. W. Grosse-Kunstleve, P. H. Zwart, W. E. White, P. Glatzel, P. D. Adams, M. J. Bogan, G. J. Williams, S. Boutet, J. Messinger, A. Zouni, N. K. Sauter, V. K. Yachandra, U. Bergmann, and J. Yano, “ Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature,” Science 340, 491495 (2013).
13. J. Kern, V. K. Yachandra, and J. Yano, “ Metalloprotein structures at ambient conditions and in real-time: Biological crystallography and spectroscopy using x-ray free electron lasers,” Curr. Opin. Struct. Biol. 34, 8798 (2015).
14. N. Rohringer, D. Ryan, R. London, M. Purvis, F. Albert, J. Dunn, J. D. Bozek, C. Bostedt, A. Graf, R. Hill, S. P. Hau-Riege, and J. J. Rocca, “ Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser,” Nature 481, 488491 (2012).
15. V. Kimberg and N. Rohringer, “ Amplified x-ray emission from core-ionized diatomic molecules,” Phys. Rev. Lett. 110, 043901 (2013).
16. H. Yoneda, Y. Inubushi, K. Nagamine, Y. Michine, H. Ohashi, H. Yumoto, K. Yamauchi, H. Mimura, H. Kitamura, T. Katayama, T. Ishikawa, and M. Yabashi, “ Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser,” Nature 524, 446449 (2015).
17. L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, “ Resonant inelastic x-ray scattering studies of elementary excitations,” Rev. Mod. Phys. 83, 705767 (2011).
18. A. Kotani and S. Shin, “ Resonant inelastic x-ray scattering spectra for electrons in solids,” Rev. Mod. Phys. 73, 203246 (2001).
19. J.-P. Rueff and A. Shukla, “ Inelastic x-ray scattering by electronic excitations under high pressure,” Rev. Mod. Phys. 82, 847896 (2010).
20. F. Hennies, A. Pietzsch, M. Berglund, A. Föhlisch, T. Schmitt, V. Strocov, H. O. Karlsson, J. Andersson, and J.-E. Rubensson, “ Resonant inelastic scattering spectra of free molecules with vibrational resolution,” Phys. Rev. Lett. 104, 193002 (2010).
21. A. Pietzsch, Y.-P. Sun, F. Hennies, Z. Rinkevicius, H. O. Karlsson, T. Schmitt, V. N. Strocov, J. Andersson, B. Kennedy, J. Schlappa, A. Föhlisch, J.-E. Rubensson, and F. Gel'mukhanov, “ Spatial quantum beats in vibrational resonant inelastic soft x-ray scattering at dissociating states in oxygen,” Phys. Rev. Lett. 106, 153004 (2011).
22. A. Pietzsch, F. Hennies, P. S. Miedema, B. Kennedy, J. Schlappa, T. Schmitt, V. N. Strocov, and A. Föhlisch, “ Snapshots of the fluctuating hydrogen bond network in liquid water on the sub-femtosecond timescale with vibrational resonant inelastic x-ray scattering,” Phys. Rev. Lett. 114, 088302 (2015).
23. P. A. Brühwiler, O. Karis, and N. Mårtensson, “ Charge-transfer dynamics studied using resonant core spectroscopies,” Rev. Mod. Phys. 74, 703740 (2002).
24. D. Menzel, “ Ultrafast charge transfer at surfaces accessed by core electron spectroscopies,” Chem. Soc. Rev. 37, 22122223 (2008).
25. F. Gel'mukhanov and H. Ågren, “ Resonant x-ray Raman scattering,” Phys. Rep. 312, 87330 (1999).
26. D. Ratner, R. Abela, J. Amann, C. Behrens, D. Bohler, G. Bouchard, C. Bostedt, M. Boyes, K. Chow, D. Cocco, F. J. Decker, Y. Ding, C. Eckman, P. Emma, D. Fairley, Y. Feng, C. Field, U. Flechsig, G. Gassner, J. Hastings, P. Heimann, Z. Huang, N. Kelez, J. Krzywinski, H. Loos, A. Lutman, A. Marinelli, G. Marcus, T. Maxwell, P. Montanez, S. Moeller, D. Morton, H. D. Nuhn, N. Rodes, W. Schlotter, S. Serkez, T. Stevens, J. Turner, D. Walz, J. Welch, and J. Wu, “ Experimental demonstration of a soft x-ray self-seeded free-electron laser,” Phys. Rev. Lett. 114, 054801 (2015).
27. J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd'ko, S. Spampinati, S. Stoupin, S. Terentyev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “ Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics 6, 693698 (2012).
28. C. Weninger, M. Purvis, D. Ryan, R. A. London, J. D. Bozek, C. Bostedt, A. Graf, G. Brown, J. J. Rocca, and N. Rohringer, “ Stimulated electronic x-ray Raman scattering,” Phys. Rev. Lett. 111, 233902 (2013).
29. C. Weninger and N. Rohringer, “ Stimulated resonant x-ray Raman scattering with incoherent radiation,” Phys. Rev. A 88, 053421 (2013).
30. A. Lutman, R. Coffee, Y. Ding, Z. Huang, J. Krzywinski, T. Maxwell, M. Messerschmidt, and H.-D. Nuhn, “ Experimental demonstration of femtosecond two-color x-ray free-electron lasers,” Phys. Rev. Lett. 110, 134801 (2013).
31. E. Allaria, F. Bencivenga, R. Borghes, F. Capotondi, D. Castronovo, P. Charalambous, P. Cinquegrana, M. B. Danailov, G. De Ninno, A. Demidovich, S. Di Mitri, B. Diviacco, D. Fausti, W. M. Fawley, E. Ferrari, L. Froehlich, D. Gauthier, A. Gessini, L. Giannessi, R. Ivanov, M. Kiskinova, G. Kurdi, B. Mahieu, N. Mahne, I. Nikolov, C. Masciovecchio, E. Pedersoli, G. Penco, L. Raimondi, C. Serpico, P. Sigalotti, S. Spampinati, C. Spezzani, C. Svetina, M. Trovò, and M. Zangrando, “ Two-colour pump-probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser,” Nat. Commun. 4, 2476 (2013).
32. S. Tanaka and S. Mukamel, “ Coherent x-ray Raman spectroscopy: A nonlinear local probe for electronic excitations,” Phys. Rev. Lett. 89, 043001 (2002).
33. Y. Zhang, J. D. Biggs, N. Govind, and S. Mukamel, “ Monitoring long-range electron transfer pathways in proteins by stimulated attosecond broadband x-ray Raman spectroscopy,” J. Phys. Chem. Lett. 5, 36563661 (2014).
34. N. Rohringer, V. Kimberg, C. Weninger, A. Sanchez-Gonzalez, A. Lutman, T. Maxwell, C. Bostedt, S. Carron Monterro, A. Lindahl, M. Ilchen, R. Coffee, J. D. Bozek, J. Krzywinski, T. Kierspel, T. Mullins, J. Küpper, B. Erk, D. Rolles, O. Mücke, R. London, M. Purvis, D. Ryan, J. J. Rocca, R. Feifel, R. Squibb, V. Zhaunerchyk, C. Sathe, M. Agaker, M. Mücke, J. Nordgren, and J. E. Rubensson, “ Stimulated x-ray Raman scattering with free-electron laser sources,” in Proceedings of the 14th International Conference on X-Ray Lasers, Springer Proceedings in Physics (2015), p. 201.
35. T. K. Sham, B. X. Yang, J. Kirz, and J. S. J. Tse, “ K-edge near-edge x-ray-absorption fine structure of oxygen-and carbon-containing molecules in the gas phase,” Phys. Rev. A 40, 652669 (1989).
36. P. Skytt, P. Glans, K. Gunnelin, J. Guo, and J. Nordgren, “ Role of screening and angular distributions in resonant x-ray emission of CO,” Phys. Rev. A 55, 134145 (1997).
37. C. Weninger and N. Rohringer, “ Transient-gain photoionization x-ray laser,” Phys. Rev. A 90, 063828 (2014).
38. E. Saldin, E. Schneidmiller, and M. Yurkov, “ Statistical properties of radiation from VUV and x-ray free electron laser,” Opt. Commun. 148, 383403 (1998).
39. S. Krinsky and R. L. Gluckstern, “ Analysis of statistical correlations and intensity spiking in the self-amplified spontaneous-emission free-electron laser,” Phys. Rev. ST Accel. Beams 6, 050701 (2003).
40. G. Vannucci and M. C. Teich, “ Computer simulation of superposed coherent and chaotic radiation,” Appl. Opt. 19, 548553 (1980).
41. N. Rohringer and R. Santra, “ X-ray nonlinear optical processes using a self-amplified spontaneous emission free-electron laser,” Phys. Rev. A 76, 033416 (2007).
42. J. Fleck, “ Ultrashort-pulse generation by Q-switched lasers,” Phys. Rev. B 1, 84 (1970).
43. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., MOLPRO, version 2012.1, a package of ab initio programs, 2012, see
44. V. Kimberg, S. B. Zhang, and N. Rohringer, “ X-ray lasing in the CO molecule,” J. Phys. B: At. Mol. Opt. Phys. 46, 164017 (2013).
45. J. J. Yeh and I. Lindau, “ Atomic subshell photoionization cross sections and asymmetry parameters: 1 < Z < 103,” At. Data Nucl. Data Tables 32, 1155 (1985).
46. M. Neeb and J. Rubensson, “ Coherent excitation of vibrational wave functions observed in core hole decay spectra of O2, N2 and CO,” J. Electron Spectrosc. Relat. Phenom. 67, 261274 (1994).
47. L. Young, E. P. Kanter, B. Krässig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. Dimauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, J. P. Cryan, S. Ghimire, J. M. Glownia, D. A. Reis, J. D. Bozek, C. Bostedt, and M. Messerschmidt, “ Femtosecond electronic response of atoms to ultra-intense X-rays,” Nature 466, 5661 (2010).
48. E. Kanter, B. Krässig, Y. Li, A. March, P. Ho, N. Rohringer, R. Santra, S. H. Southworth, L. F. DiMauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, S. Ghimire, D. A. Reis, J. D. Bozek, C. Bostedt, M. Messerschmidt, and L. Young, “ Unveiling and driving hidden resonances with high-fluence, high-intensity x-ray pulses,” Phys. Rev. Lett. 107, 233001 (2011).
49. N. Rohringer and R. Santra, “ Strongly driven resonant auger effect treated by an open-quantum-system approach,” Phys. Rev. A 86, 043434 (2012).
50. S. Schreck, M. Beye, J. A. Sellberg, T. McQueen, H. Laksmono, B. Kennedy, S. Eckert, D. Schlesinger, D. Nordlund, H. Ogasawara, R. G. Sierra, V. H. Segtnan, K. Kubicek, W. F. Schlotter, G. L. Dakovski, S. P. Moeller, U. Bergmann, S. Techert, L. G. Pettersson, P. Wernet, M. J. Bogan, Y. Harada, A. Nilsson, and A. Föhlisch, “ Reabsorption of soft x-ray emission at high x-ray free-electron laser fluences,” Phys. Rev. Lett. 113, 153002 (2014).
51. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. ( Cambridge University Press, Cambridge, 2007).
52. P. Demekhin, Y. Chiang, and L. S. Cederbaum, “ Resonant Auger decay of the core-excited molecule in intense x-ray laser fields,” Phys. Rev. A 84, 033417 (2011).
53. M. Coreno, M. de Simone, K. C. Prince, R. Richter, M. Vondracek, L. Avaldi, and R. Camilloni, “ Vibrationally resolved oxygen spectra of O2 and CO,” Chem. Phys. Lett. 306, 269274 (1999).
54. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms ( John Wiley & Sons, Inc., New York, 1975).
55. L. J. Frasinski, K. Codling, and P. A. Hatherly, “ Covariance mapping: A correlation method applied to multiphoton multiple ionization,” Science 246, 10291031 (1989).
56. V. Zhaunerchyk, M. Mucke, P. Salén, P. V. Meulen, M. Kaminska, R. J. Squibb, L. J. Frasinski, M. Siano, J. H. D. Eland, P. Linusson, R. D. Thomas, M. Larsson, L. Foucar, J. Ullrich, K. Motomura, S. Mondal, K. Ueda, T. Osipov, L. Fang, B. F. Murphy, N. Berrah, C. Bostedt, J. D. Bozek, S. Schorb, M. Messerschmidt, J. M. Glownia, J. P. Cryan, R. N. Coffee, O. Takahashi, S. Wada, M. N. Piancastelli, R. Richter, K. C. Prince, and R. Feifel, “ Using covariance mapping to investigate the dynamics of multi-photon ionization processes of Ne atoms exposed to X-FEL pulses,” J. Phys. B: At. Mol. Opt. Phys. 46, 164034 (2013).
57. G. Ghiringhelli, A. Piazzalunga, C. Dallera, G. Trezzi, L. Braicovich, T. Schmitt, V. N. Strocov, R. Betemps, L. Patthey, X. Wang, and M. Grioni, “ Saxes, a high resolution spectrometer for resonant x-ray emission in the 400–1600 eV energy range,” Rev. Sci. Instrum. 77, 113108 (2006).
58. D. B. Turner, D. J. Howey, E. J. Sutor, R. A. Hendrickson, M. W. Gealy, and D. J. Ulness, “ Two-dimensional electronic spectroscopy using incoherent light: Theoretical analysis,” J. Phys. Chem. A 117, 59265954 (2013).
59. A. A. Zholents and G. Penn, “ Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser,” Phys. Rev. ST Accel. Beams 8, 050704 (2005).
60. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “ Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond x-ray pulses,” Phys. Rev. ST Accel. Beams 9, 050702 (2006).
61. A. A. Zholents and W. M. Fawley, “ Proposal for intense attosecond radiation from an x-ray free-electron laser,” Phys. Rev. Lett. 92, 224801 (2004).
62. E. Prat and S. Reiche, “ Simple method to generate terawatt-attosecond x-ray free-electron-laser pulses,” Phys. Rev. Lett. 114, 244801 (2015).
63. G. Marcus, G. Penn, and A. A. Zholents, “ Free-electron laser design for four-wave mixing experiments with soft-x-ray pulses,” Phys. Rev. Lett. 113, 024801 (2014).
64. S. Ackermann, A. Azima, S. Bajt, J. Bödewadt, F. Curbis, H. Dachraoui, H. Delsim-Hashemi, M. Drescher, S. Düsterer, B. Faatz, M. Felber, J. Feldhaus, E. Hass, U. Hipp, K. Honkavaara, R. Ischebeck, S. Khan, T. Laarmann, C. Lechner, T. Maltezopoulos, V. Miltchev, M. Mittenzwey, M. Rehders, J. Rönsch-Schulenburg, J. Rossbach, H. Schlarb, S. Schreiber, L. Schroedter, M. Schulz, S. Schulz, R. Tarkeshian, M. Tischer, V. Wacker, and M. Wieland, “ Generation of coherent 19- and 38-nm radiation at a free-electron laser directly seeded at 38 nm,” Phys. Rev. Lett. 111, 114801 (2013).
65. G. De Ninno, D. Gauthier, B. Mahieu, P. R. Ribič, E. Allaria, P. Cinquegrana, M. B. Danailov, A. Demidovich, E. Ferrari, L. Giannessi, G. Penco, P. Sigalotti, and M. Stupar, “ Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser,” Nat. Commun. 6, 8075 (2015).
66. A. A. Lutman, F.-J. Decker, J. Arthur, M. Chollet, Y. Feng, J. Hastings, Z. Huang, H. Lemke, H.-D. Nuhn, A. Marinelli, J. L. Turner, S. Wakatsuki, J. Welch, and D. Zhu, “ Demonstration of single-crystal self-seeded two-color x-ray free-electron lasers,” Phys. Rev. Lett. 113, 254801 (2014).

Data & Media loading...


Article metrics loading...



Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-rayfree electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd