Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/3/10.1063/1.4940916
1.
1. J. Tenboer, S. Basu, N. Zatsepin, K. Pande, D. Milathianaki, M. Frank, M. Hunter, S. Boutet, G. J. Williams, J. E. Koglin, D. Oberthuer, M. Heymann, C. Kupitz, C. Conrad, J. Coe, S. Roy-Chowdhury, U. Weierstall, D. James, D. Wang, T. Grant, A. Barty, O. Yefanov, J. Scales, C. Gati, C. Seuring, V. Srajer, R. Henning, P. Schwander, R. Fromme, A. Ourmazd, K. Moffat, J. J. Van Thor, J. C. H. Spence, P. Fromme, H. N. Chapman, and M. Schmidt, “ Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein,” Science 346, 12421246 (2014).
http://dx.doi.org/10.1126/science.1259357
2.
2. T. R. M. Barends, L. Foucar, A. Ardevol, K. Nass, A. Aquila, S. Botha, R. B. Doak, K. Falahati, E. Hartmann, M. Hilpert, M. Heinz, M. C. Hoffmann, J. Kfinger, J. E. Koglin, G. Kovacsova, M. Liang, D. Milathianaki, H. Lemke, J. Reinstein, C. M. Roome, R. L. Shoeman, G. J. Williams, I. Burghardt, G. Hummer, S. Boutet, and I. Schlichting, “ Direct observation of ultrafast collective motions in co myoglobin upon ligand dissociation,” Science 350, 445450 (2015).
http://dx.doi.org/10.1126/science.aac5492
3.
3. W. Zhang, R. Alonso-Mori, U. Bergmann, C. Bressler, M. Chollet, A. Galler, W. Gawelda, R. G. Hadt, R. W. Hartsock, T. Kroll, K. S. Kjær, K. Kubiček, H. T. Lemke, H. W. Liang, D. A. Meyer, M. M. Nielsen, C. Purser, J. S. Robinson, E. I. Solomon, Z. Sun, D. Sokaras, T. B. van Driel, G. Vankó, T.-C. Weng, D. Zhu, and K. J. Gaffney, “ Tracking excited-state charge and spin dynamics in iron coordination complexes,” Nature 509, 345348 (2014).
http://dx.doi.org/10.1038/nature13252
4.
4. C. Bressler, C. Milne, V.-T. Pham, A. Elnahhas, R. M. van der Veen, W. Gawelda, S. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C. N. Borca, G. Ingold, R. Abela, and M. Chergui, “ Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(II) complex,” Science 323, 489492 (2009).
http://dx.doi.org/10.1126/science.1165733
5.
5. L. X. Chen, “ Probing transient molecular structures in photochemical processes using laser-initiated time-resolved x-ray absorption spectroscopy,” Ann. Rev. Phys. Chem. 56, 221254 (2005).
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141310
6.
6. M. Beye, P. Wernet, C. Schler-Langeheine, and A. Fhlisch, “ Time resolved resonant inelastic x-ray scattering: A supreme tool to understand dynamics in solids and molecules,” J. Electron Spectrosc. Relat. Phenom. 188, 172182 (2013).
http://dx.doi.org/10.1016/j.elspec.2013.04.013
7.
7. P. Wernet, K. Kunnus, I. Josefsson, I. Rajkovic, W. Quevedo, M. Beye, S. Schreck, S. Grübel, M. Scholz, D. Nordlund, W. Zhang, R. W. Hartsock, W. F. Schlotter, J. J. Turner, B. Kennedy, F. Hennies, F. M. F. de Groot, K. J. Gaffney, S. Techert, M. Odelius, and A. Föhlisch, “ Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution,” Nature 520, 7881 (2015).
http://dx.doi.org/10.1038/nature14296
8.
8. L. Perfetti, P. Loukakos, M. Lisowski, U. Bovensiepen, H. Eisaki, and M. Wolf, “ Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2 by time-resolved photoelectron spectroscopy,” Phys. Rev. Lett. 99, 197001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.197001
9.
9. A. Pietzsch, A. Fhlisch, M. Beye, M. Deppe, F. Hennies, M. Nagasono, E. Suljoti, W. Wurth, C. Gahl, K. Dbrich, and A. Melnikov, “ Towards time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers,” New J. Phys. 10, 033004 (2008).
http://dx.doi.org/10.1088/1367-2630/10/3/033004
10.
10. B. K. McFarland, J. P. Farrell, S. Miyabe, F. Tarantelli, A. Aguilar, N. Berrah, C. Bostedt, J. D. Bozek, P. H. Bucksbaum, J. C. Castagna, R. N. Coffee, J. P. Cryan, L. Fang, R. Feifel, K. J. Gaffney, J. M. Glownia, T. J. Martinez, M. Mucke, B. Murphy, A. Natan, T. Osipov, V. S. Petrović, S. Schorb, T. Schultz, L. S. Spector, M. Swiggers, I. Tenney, S. Wang, J. L. White, W. White, and M. Gühr, “ Ultrafast X-ray Auger probing of photoexcited molecular dynamics,” Nat. Commun. 5, 4235 (2014).
http://dx.doi.org/10.1038/ncomms5235
11.
11. S. B. Zhang and N. Rohringer, “ Quantum beat Auger spectroscopy,” Phys. Rev. A 92, 043420 (2015).
http://dx.doi.org/10.1103/PhysRevA.92.043420
12.
12. J. Kern, R. Alonso-Mori, R. Tran, J. Hattne, R. J. Gildea, N. Echols, C. Glöckner, J. Hellmich, H. Laksmono, R. G. Sierra, B. Lassalle-Kaiser, S. Koroidov, A. Lampe, G. Han, S. Gul, D. Difiore, D. Milathianaki, A. R. Fry, A. Miahnahri, D. W. Schafer, M. Messerschmidt, M. M. Seibert, J. E. Koglin, D. Sokaras, T.-C. Weng, J. Sellberg, M. J. Latimer, R. W. Grosse-Kunstleve, P. H. Zwart, W. E. White, P. Glatzel, P. D. Adams, M. J. Bogan, G. J. Williams, S. Boutet, J. Messinger, A. Zouni, N. K. Sauter, V. K. Yachandra, U. Bergmann, and J. Yano, “ Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature,” Science 340, 491495 (2013).
http://dx.doi.org/10.1126/science.1234273
13.
13. J. Kern, V. K. Yachandra, and J. Yano, “ Metalloprotein structures at ambient conditions and in real-time: Biological crystallography and spectroscopy using x-ray free electron lasers,” Curr. Opin. Struct. Biol. 34, 8798 (2015).
http://dx.doi.org/10.1016/j.sbi.2015.07.014
14.
14. N. Rohringer, D. Ryan, R. London, M. Purvis, F. Albert, J. Dunn, J. D. Bozek, C. Bostedt, A. Graf, R. Hill, S. P. Hau-Riege, and J. J. Rocca, “ Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser,” Nature 481, 488491 (2012).
http://dx.doi.org/10.1038/nature10721
15.
15. V. Kimberg and N. Rohringer, “ Amplified x-ray emission from core-ionized diatomic molecules,” Phys. Rev. Lett. 110, 043901 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.043901
16.
16. H. Yoneda, Y. Inubushi, K. Nagamine, Y. Michine, H. Ohashi, H. Yumoto, K. Yamauchi, H. Mimura, H. Kitamura, T. Katayama, T. Ishikawa, and M. Yabashi, “ Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser,” Nature 524, 446449 (2015).
http://dx.doi.org/10.1038/nature14894
17.
17. L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, “ Resonant inelastic x-ray scattering studies of elementary excitations,” Rev. Mod. Phys. 83, 705767 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.705
18.
18. A. Kotani and S. Shin, “ Resonant inelastic x-ray scattering spectra for electrons in solids,” Rev. Mod. Phys. 73, 203246 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.203
19.
19. J.-P. Rueff and A. Shukla, “ Inelastic x-ray scattering by electronic excitations under high pressure,” Rev. Mod. Phys. 82, 847896 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.847
20.
20. F. Hennies, A. Pietzsch, M. Berglund, A. Föhlisch, T. Schmitt, V. Strocov, H. O. Karlsson, J. Andersson, and J.-E. Rubensson, “ Resonant inelastic scattering spectra of free molecules with vibrational resolution,” Phys. Rev. Lett. 104, 193002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.193002
21.
21. A. Pietzsch, Y.-P. Sun, F. Hennies, Z. Rinkevicius, H. O. Karlsson, T. Schmitt, V. N. Strocov, J. Andersson, B. Kennedy, J. Schlappa, A. Föhlisch, J.-E. Rubensson, and F. Gel'mukhanov, “ Spatial quantum beats in vibrational resonant inelastic soft x-ray scattering at dissociating states in oxygen,” Phys. Rev. Lett. 106, 153004 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.153004
22.
22. A. Pietzsch, F. Hennies, P. S. Miedema, B. Kennedy, J. Schlappa, T. Schmitt, V. N. Strocov, and A. Föhlisch, “ Snapshots of the fluctuating hydrogen bond network in liquid water on the sub-femtosecond timescale with vibrational resonant inelastic x-ray scattering,” Phys. Rev. Lett. 114, 088302 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.088302
23.
23. P. A. Brühwiler, O. Karis, and N. Mårtensson, “ Charge-transfer dynamics studied using resonant core spectroscopies,” Rev. Mod. Phys. 74, 703740 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.703
24.
24. D. Menzel, “ Ultrafast charge transfer at surfaces accessed by core electron spectroscopies,” Chem. Soc. Rev. 37, 22122223 (2008).
http://dx.doi.org/10.1039/b719546j
25.
25. F. Gel'mukhanov and H. Ågren, “ Resonant x-ray Raman scattering,” Phys. Rep. 312, 87330 (1999).
http://dx.doi.org/10.1016/S0370-1573(99)00003-4
26.
26. D. Ratner, R. Abela, J. Amann, C. Behrens, D. Bohler, G. Bouchard, C. Bostedt, M. Boyes, K. Chow, D. Cocco, F. J. Decker, Y. Ding, C. Eckman, P. Emma, D. Fairley, Y. Feng, C. Field, U. Flechsig, G. Gassner, J. Hastings, P. Heimann, Z. Huang, N. Kelez, J. Krzywinski, H. Loos, A. Lutman, A. Marinelli, G. Marcus, T. Maxwell, P. Montanez, S. Moeller, D. Morton, H. D. Nuhn, N. Rodes, W. Schlotter, S. Serkez, T. Stevens, J. Turner, D. Walz, J. Welch, and J. Wu, “ Experimental demonstration of a soft x-ray self-seeded free-electron laser,” Phys. Rev. Lett. 114, 054801 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.054801
27.
27. J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd'ko, S. Spampinati, S. Stoupin, S. Terentyev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “ Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics 6, 693698 (2012).
http://dx.doi.org/10.1038/nphoton.2012.180
28.
28. C. Weninger, M. Purvis, D. Ryan, R. A. London, J. D. Bozek, C. Bostedt, A. Graf, G. Brown, J. J. Rocca, and N. Rohringer, “ Stimulated electronic x-ray Raman scattering,” Phys. Rev. Lett. 111, 233902 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.233902
29.
29. C. Weninger and N. Rohringer, “ Stimulated resonant x-ray Raman scattering with incoherent radiation,” Phys. Rev. A 88, 053421 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.053421
30.
30. A. Lutman, R. Coffee, Y. Ding, Z. Huang, J. Krzywinski, T. Maxwell, M. Messerschmidt, and H.-D. Nuhn, “ Experimental demonstration of femtosecond two-color x-ray free-electron lasers,” Phys. Rev. Lett. 110, 134801 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.134801
31.
31. E. Allaria, F. Bencivenga, R. Borghes, F. Capotondi, D. Castronovo, P. Charalambous, P. Cinquegrana, M. B. Danailov, G. De Ninno, A. Demidovich, S. Di Mitri, B. Diviacco, D. Fausti, W. M. Fawley, E. Ferrari, L. Froehlich, D. Gauthier, A. Gessini, L. Giannessi, R. Ivanov, M. Kiskinova, G. Kurdi, B. Mahieu, N. Mahne, I. Nikolov, C. Masciovecchio, E. Pedersoli, G. Penco, L. Raimondi, C. Serpico, P. Sigalotti, S. Spampinati, C. Spezzani, C. Svetina, M. Trovò, and M. Zangrando, “ Two-colour pump-probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser,” Nat. Commun. 4, 2476 (2013).
http://dx.doi.org/10.1038/ncomms3476
32.
32. S. Tanaka and S. Mukamel, “ Coherent x-ray Raman spectroscopy: A nonlinear local probe for electronic excitations,” Phys. Rev. Lett. 89, 043001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.043001
33.
33. Y. Zhang, J. D. Biggs, N. Govind, and S. Mukamel, “ Monitoring long-range electron transfer pathways in proteins by stimulated attosecond broadband x-ray Raman spectroscopy,” J. Phys. Chem. Lett. 5, 36563661 (2014).
http://dx.doi.org/10.1021/jz501966h
34.
34. N. Rohringer, V. Kimberg, C. Weninger, A. Sanchez-Gonzalez, A. Lutman, T. Maxwell, C. Bostedt, S. Carron Monterro, A. Lindahl, M. Ilchen, R. Coffee, J. D. Bozek, J. Krzywinski, T. Kierspel, T. Mullins, J. Küpper, B. Erk, D. Rolles, O. Mücke, R. London, M. Purvis, D. Ryan, J. J. Rocca, R. Feifel, R. Squibb, V. Zhaunerchyk, C. Sathe, M. Agaker, M. Mücke, J. Nordgren, and J. E. Rubensson, “ Stimulated x-ray Raman scattering with free-electron laser sources,” in Proceedings of the 14th International Conference on X-Ray Lasers, Springer Proceedings in Physics (2015), p. 201.
35.
35. T. K. Sham, B. X. Yang, J. Kirz, and J. S. J. Tse, “ K-edge near-edge x-ray-absorption fine structure of oxygen-and carbon-containing molecules in the gas phase,” Phys. Rev. A 40, 652669 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.652
36.
36. P. Skytt, P. Glans, K. Gunnelin, J. Guo, and J. Nordgren, “ Role of screening and angular distributions in resonant x-ray emission of CO,” Phys. Rev. A 55, 134145 (1997).
http://dx.doi.org/10.1103/PhysRevA.55.134
37.
37. C. Weninger and N. Rohringer, “ Transient-gain photoionization x-ray laser,” Phys. Rev. A 90, 063828 (2014).
http://dx.doi.org/10.1103/PhysRevA.90.063828
38.
38. E. Saldin, E. Schneidmiller, and M. Yurkov, “ Statistical properties of radiation from VUV and x-ray free electron laser,” Opt. Commun. 148, 383403 (1998).
http://dx.doi.org/10.1016/S0030-4018(97)00670-6
39.
39. S. Krinsky and R. L. Gluckstern, “ Analysis of statistical correlations and intensity spiking in the self-amplified spontaneous-emission free-electron laser,” Phys. Rev. ST Accel. Beams 6, 050701 (2003).
http://dx.doi.org/10.1103/PhysRevSTAB.6.050701
40.
40. G. Vannucci and M. C. Teich, “ Computer simulation of superposed coherent and chaotic radiation,” Appl. Opt. 19, 548553 (1980).
http://dx.doi.org/10.1364/AO.19.000548
41.
41. N. Rohringer and R. Santra, “ X-ray nonlinear optical processes using a self-amplified spontaneous emission free-electron laser,” Phys. Rev. A 76, 033416 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.033416
42.
42. J. Fleck, “ Ultrashort-pulse generation by Q-switched lasers,” Phys. Rev. B 1, 84 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.84
43.
43. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., MOLPRO, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
44.
44. V. Kimberg, S. B. Zhang, and N. Rohringer, “ X-ray lasing in the CO molecule,” J. Phys. B: At. Mol. Opt. Phys. 46, 164017 (2013).
http://dx.doi.org/10.1088/0953-4075/46/16/164017
45.
45. J. J. Yeh and I. Lindau, “ Atomic subshell photoionization cross sections and asymmetry parameters: 1 < Z < 103,” At. Data Nucl. Data Tables 32, 1155 (1985).
http://dx.doi.org/10.1016/0092-640X(85)90016-6
46.
46. M. Neeb and J. Rubensson, “ Coherent excitation of vibrational wave functions observed in core hole decay spectra of O2, N2 and CO,” J. Electron Spectrosc. Relat. Phenom. 67, 261274 (1994).
http://dx.doi.org/10.1016/0368-2048(93)02050-V
47.
47. L. Young, E. P. Kanter, B. Krässig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. Dimauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, J. P. Cryan, S. Ghimire, J. M. Glownia, D. A. Reis, J. D. Bozek, C. Bostedt, and M. Messerschmidt, “ Femtosecond electronic response of atoms to ultra-intense X-rays,” Nature 466, 5661 (2010).
http://dx.doi.org/10.1038/nature09177
48.
48. E. Kanter, B. Krässig, Y. Li, A. March, P. Ho, N. Rohringer, R. Santra, S. H. Southworth, L. F. DiMauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, S. Ghimire, D. A. Reis, J. D. Bozek, C. Bostedt, M. Messerschmidt, and L. Young, “ Unveiling and driving hidden resonances with high-fluence, high-intensity x-ray pulses,” Phys. Rev. Lett. 107, 233001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.233001
49.
49. N. Rohringer and R. Santra, “ Strongly driven resonant auger effect treated by an open-quantum-system approach,” Phys. Rev. A 86, 043434 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.043434
50.
50. S. Schreck, M. Beye, J. A. Sellberg, T. McQueen, H. Laksmono, B. Kennedy, S. Eckert, D. Schlesinger, D. Nordlund, H. Ogasawara, R. G. Sierra, V. H. Segtnan, K. Kubicek, W. F. Schlotter, G. L. Dakovski, S. P. Moeller, U. Bergmann, S. Techert, L. G. Pettersson, P. Wernet, M. J. Bogan, Y. Harada, A. Nilsson, and A. Föhlisch, “ Reabsorption of soft x-ray emission at high x-ray free-electron laser fluences,” Phys. Rev. Lett. 113, 153002 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.153002
51.
51. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. ( Cambridge University Press, Cambridge, 2007).
52.
52. P. Demekhin, Y. Chiang, and L. S. Cederbaum, “ Resonant Auger decay of the core-excited molecule in intense x-ray laser fields,” Phys. Rev. A 84, 033417 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.033417
53.
53. M. Coreno, M. de Simone, K. C. Prince, R. Richter, M. Vondracek, L. Avaldi, and R. Camilloni, “ Vibrationally resolved oxygen spectra of O2 and CO,” Chem. Phys. Lett. 306, 269274 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00468-6
54.
54. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms ( John Wiley & Sons, Inc., New York, 1975).
55.
55. L. J. Frasinski, K. Codling, and P. A. Hatherly, “ Covariance mapping: A correlation method applied to multiphoton multiple ionization,” Science 246, 10291031 (1989).
http://dx.doi.org/10.1126/science.246.4933.1029
56.
56. V. Zhaunerchyk, M. Mucke, P. Salén, P. V. Meulen, M. Kaminska, R. J. Squibb, L. J. Frasinski, M. Siano, J. H. D. Eland, P. Linusson, R. D. Thomas, M. Larsson, L. Foucar, J. Ullrich, K. Motomura, S. Mondal, K. Ueda, T. Osipov, L. Fang, B. F. Murphy, N. Berrah, C. Bostedt, J. D. Bozek, S. Schorb, M. Messerschmidt, J. M. Glownia, J. P. Cryan, R. N. Coffee, O. Takahashi, S. Wada, M. N. Piancastelli, R. Richter, K. C. Prince, and R. Feifel, “ Using covariance mapping to investigate the dynamics of multi-photon ionization processes of Ne atoms exposed to X-FEL pulses,” J. Phys. B: At. Mol. Opt. Phys. 46, 164034 (2013).
http://dx.doi.org/10.1088/0953-4075/46/16/164034
57.
57. G. Ghiringhelli, A. Piazzalunga, C. Dallera, G. Trezzi, L. Braicovich, T. Schmitt, V. N. Strocov, R. Betemps, L. Patthey, X. Wang, and M. Grioni, “ Saxes, a high resolution spectrometer for resonant x-ray emission in the 400–1600 eV energy range,” Rev. Sci. Instrum. 77, 113108 (2006).
http://dx.doi.org/10.1063/1.2372731
58.
58. D. B. Turner, D. J. Howey, E. J. Sutor, R. A. Hendrickson, M. W. Gealy, and D. J. Ulness, “ Two-dimensional electronic spectroscopy using incoherent light: Theoretical analysis,” J. Phys. Chem. A 117, 59265954 (2013).
http://dx.doi.org/10.1021/jp310477y
59.
59. A. A. Zholents and G. Penn, “ Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser,” Phys. Rev. ST Accel. Beams 8, 050704 (2005).
http://dx.doi.org/10.1103/PhysRevSTAB.8.050704
60.
60. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “ Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond x-ray pulses,” Phys. Rev. ST Accel. Beams 9, 050702 (2006).
http://dx.doi.org/10.1103/PhysRevSTAB.9.050702
61.
61. A. A. Zholents and W. M. Fawley, “ Proposal for intense attosecond radiation from an x-ray free-electron laser,” Phys. Rev. Lett. 92, 224801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.224801
62.
62. E. Prat and S. Reiche, “ Simple method to generate terawatt-attosecond x-ray free-electron-laser pulses,” Phys. Rev. Lett. 114, 244801 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.244801
63.
63. G. Marcus, G. Penn, and A. A. Zholents, “ Free-electron laser design for four-wave mixing experiments with soft-x-ray pulses,” Phys. Rev. Lett. 113, 024801 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.024801
64.
64. S. Ackermann, A. Azima, S. Bajt, J. Bödewadt, F. Curbis, H. Dachraoui, H. Delsim-Hashemi, M. Drescher, S. Düsterer, B. Faatz, M. Felber, J. Feldhaus, E. Hass, U. Hipp, K. Honkavaara, R. Ischebeck, S. Khan, T. Laarmann, C. Lechner, T. Maltezopoulos, V. Miltchev, M. Mittenzwey, M. Rehders, J. Rönsch-Schulenburg, J. Rossbach, H. Schlarb, S. Schreiber, L. Schroedter, M. Schulz, S. Schulz, R. Tarkeshian, M. Tischer, V. Wacker, and M. Wieland, “ Generation of coherent 19- and 38-nm radiation at a free-electron laser directly seeded at 38 nm,” Phys. Rev. Lett. 111, 114801 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.114801
65.
65. G. De Ninno, D. Gauthier, B. Mahieu, P. R. Ribič, E. Allaria, P. Cinquegrana, M. B. Danailov, A. Demidovich, E. Ferrari, L. Giannessi, G. Penco, P. Sigalotti, and M. Stupar, “ Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser,” Nat. Commun. 6, 8075 (2015).
http://dx.doi.org/10.1038/ncomms9075
66.
66. A. A. Lutman, F.-J. Decker, J. Arthur, M. Chollet, Y. Feng, J. Hastings, Z. Huang, H. Lemke, H.-D. Nuhn, A. Marinelli, J. L. Turner, S. Wakatsuki, J. Welch, and D. Zhu, “ Demonstration of single-crystal self-seeded two-color x-ray free-electron lasers,” Phys. Rev. Lett. 113, 254801 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.254801
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/3/10.1063/1.4940916
Loading
/content/aca/journal/sdy/3/3/10.1063/1.4940916
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/3/10.1063/1.4940916
2016-02-09
2016-12-05

Abstract

Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-rayfree electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/3/1.4940916.html;jsessionid=UT29VWCySOTU9FWbXgghNBqH.x-aip-live-06?itemId=/content/aca/journal/sdy/3/3/10.1063/1.4940916&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/3/10.1063/1.4940916&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/3/10.1063/1.4940916'
Right1,Right2,Right3,