Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/3/10.1063/1.4945792
1.
1. A. Szoke, W. G. Scott, and J. Hajdu, “ Catalysis, evolution and life,” FEBS Lett. 553, 1820 (2003).
http://dx.doi.org/10.1016/S0014-5793(03)01008-1
2.
2. A. Szoke, D. Van der Spoel, and J. Hajdu, “ Energy utilization, catalysis and evolution—The emergent principles of life,” Curr. Chem. Biol. 1, 5357 (2007).
3.
3. A. Cooper, “ Thermodynamic fluctuations in protein molecules,” Proc. Natl. Acad. Sci. U.S.A. 73, 27402741 (1976).
http://dx.doi.org/10.1073/pnas.73.8.2740
4.
4. Q. Xue and E. Yeung, “ Differences in the chemical-reactivity of individual molecules of an enzyme,” Nature 373, 681683 (1995).
http://dx.doi.org/10.1038/373681a0
5.
5. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 4th ed. ( Garland, 2002).
6.
6. J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, 5th ed. ( Freeman, 2002).
7.
7. R. B. Laughlin and D. Pines, “ The theory of everything,” Proc. Natl. Acad. Sci. U.S.A. 97, 2831 (2000).
http://dx.doi.org/10.1073/pnas.97.1.28
8.
8. J. Monod, Chance and Necessity ( Collins, 1970).
9.
9. C. Woese, “ A new biology for a new century,” Microbiol. Mol. Biol. Rev. 68, 173186 (2004).
http://dx.doi.org/10.1128/MMBR.68.2.173-186.2004
10.
10. H. F. Noller, “ The driving force for molecular evolution of translation,” RNA 10, 18331837 (2004).
http://dx.doi.org/10.1261/rna.7142404
11.
11. R. Dawkins, The Selfish Gene, 2nd ed. ( Oxford University Press, 1989).
12.
12. R. Dawkins, The Blind Watchmaker ( Norton, New York, 1987).
13.
13. M. Eigen, Steps Towards Life ( Oxford University Press, 1992).
14.
14. M. Eigen, “ Error catastrophe and antiviral strategy,” Proc. Natl. Acad. Sci. U.S.A. 99, 1337413376 (2002).
http://dx.doi.org/10.1073/pnas.212514799
15.
15. L. Hand and J. Finch, Analytical Mechanics ( Cambridge University Press, Cambridge, 2008).
16.
16. F. Jensen, Introduction to Computational Chemistry ( Wiley & Sons, Chichester, 1999).
17.
17. D. Chandler, Introduction to Modern Statistical Mechanics ( Oxford University Press, 1987).
18.
18. G. Gallavotti and E. G. D. Cohen, “ Dynamical ensembles in nonequilibrium statistical mechanics,” Phys Rev. Lett. 74, 26942697 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.2694
19.
19. R. J. Evans and D. J. Searles, “ The fluctuation theorem,” Adv. Phys. 51, 15291585 (2002).
http://dx.doi.org/10.1080/00018730210155133
20.
20. C. Jarzynski, “ Nonequilibrium equality for free energy differences,” Phys. Rev. Lett. 78, 26902693 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2690
21.
21. G. E. Crooks, “ Entropy production fluctuation theorem and the nonequilibrium relation for free energy differences,” Phys. Rev. E 60, 27212726 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.2721
22.
22. V. Cherniak and S. Mukamel, “ Effect of quantum collapse on the distribution of work in driven single molecules,” Phys. Rev. Lett. 93, 048302 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.048302
23.
23. D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco, Jr., and C. Bustamante, “ Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies,” Nature 437, 231234 (2005).
http://dx.doi.org/10.1038/nature04061
24.
24. C. Jarzynski, “ Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale,” Annu. Rev. Condens. Matter Phys. 2, 329351 (2011).
25.
25.Denoting the energy of the system by , its pressure by , its volume by , its temperature by , and its entropy by , the Gibbs free energy is defined as .
26.
26.It is always true that the free energy difference, , between the initial and final states, and is well defined. The work depends on some “control parameter” that may not have a well defined value in states and . In that case, a fixed may not connect the “exact” states and . This point was discussed by Crooks.21
27.
27. C. Van den Broeck and M. Esposito, “ Ensemble and trajectory thermodynamics: A brief introduction,” Physica A. 418, 616 (2015).
http://dx.doi.org/10.1016/j.physa.2014.04.035
28.
28. U. Seifert, “ Stochastic thermodynamics, fluctuation theorems and molecular machines,” Rep. Prog. Phys. 75, 126001 (2012).
http://dx.doi.org/10.1088/0034-4885/75/12/126001
29.
29. D. A. Sivak and G. A. Crooks, “ Thermodynamic metrics and optimal paths,” Phys. Rev. Lett. 108, 190602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.190602
30.
30. W. S. Bennett, Jr. and T. A. Seitz, “ Glucose-induced conformational change in yeast hexokinase,” Proc. Natl. Acad. Sci. U.S.A. 75, 48484852 (1978).
http://dx.doi.org/10.1073/pnas.75.10.4848
31.
31. T. M. Schmeing, K. S. Huang, S. A. Strobel, and T. A. Steitz, “ An induced fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-RNA,” Nature 438, 520524 (2005).
32.
32.The quantitative expression for the free energy difference for an ion of charge is the Nernst equation: where is the potential across the membrane, is the Faraday constant, and and are the concentrations (actually the activities) of the ion on the two sides of the membrane. The constants are such that mV/pH unit.
33.
33. F. Fassioli, A. Olaya-Castro, S. Scheuring, J. N. Sturgis, and N. F. Johnson, “ Energy transfer in light-adapted photosynthetic membranes: From active to saturated photosynthesis,” Biophys. J. 97, 24642473 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.08.033
34.
34. E. Daviso, S. Prakash, A. Alia, P. Gast, J. Neugebauer, G. Jeschke, and J. Matysik, “ The electronic structure of the primary electron donor of reaction centers of purple bacteria at atomic resolution as observed by photo-CIDNP C-13 NMR,” Proc. Natl. Acad. Sci. U.S.A. 106, 2228122286 (2009).
http://dx.doi.org/10.1073/pnas.0908608106
35.
35. R. J. Cogdell, A. Gall, and J. Koehler, “ The architecture and function of the light-harvesting apparatus of purple bacteria: From single molecules to in vivo membranes,” Q. Rev. Biophys. 39, 227324 (2006).
http://dx.doi.org/10.1017/S0033583506004434
36.
36. R. Neutze, E. Pebay-Peyroula, K. Edman, A. Royant, J. Navarro, and E. Landau, “ Bacteriorhodopsin: A high-resolution structural view of vectorial proton transport,” Biochim. Biophys. Acta-Biomembr. 1565, 144167 (2002).
http://dx.doi.org/10.1016/S0005-2736(02)00566-7
37.
37. K. Edman, P. Nollert, A. Royant, H. Belrhali, E. Pebay, J. Hajdi, R. Neutze, and E. M. Landau, “ High resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle,” Nature 401, 821826 (1999).
38.
38. C. Pfisterer, A. Gruia, and S. Fischer, “ The mechanism of photo-energy storage in the halorhodopsin chloride pump,” J. Biol. Chem. 284, 1356213569 (2009).
http://dx.doi.org/10.1074/jbc.M808787200
39.
39. R. Phillips and S. R. Quake, “ The biological frontier of physics,” Phys. Today 59(5), 3843 (2006).
http://dx.doi.org/10.1063/1.2216960
40.
40. D. G. Nicholls and S. J. Ferguson, Bioenergetics, 3rd ed. ( Academic Press, 2002).
41.
41. Y.-S. Che, S. Nakamura, S. Kojima, N. Kami-ike, K. Namba, and T. Minamino, “ Suppressor analysis of the MotB(D33E) mutation to probe bacterial flagellar motor dynamics coupled with proton translocation,” J. Bacteriol. 190, 66606667 (2008).
http://dx.doi.org/10.1128/JB.00503-08
42.
42. W. Junge and N. Nelson, “ ATP synthase,” Annu. Rev. Biochem. 84, 631657 (2015).
http://dx.doi.org/10.1146/annurev-biochem-060614-034124
43.
43. K.-I. Okazaki and G. Hummer, “ Elasticity, friction, and pathway of -subunit rotation in FoF1-ATP synthase,” Proc. Natl. Acad. Sci. U.S.A. 112, 1072010725 (2015).
http://dx.doi.org/10.1073/pnas.1500691112
44.
44. S. Kojima, “ Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor,” Curr. Opin. Microbiol. 28, 6671 (2015).
http://dx.doi.org/10.1016/j.mib.2015.07.015
45.
45. T. Minamino and K. Imada, “ The bacterial flagellar motor and its structural diversity,” Trends Microbiol. 23, 267274 (2015).
http://dx.doi.org/10.1016/j.tim.2014.12.011
46.
46. J. Lipfert, M. M. van Oene, M. Lee, F. Pedaci, and N. H. Dekker, “ Torque spectroscopy for the study of rotary motion in biological systems,” Chem. Rev. 115, 14491474 (2015).
http://dx.doi.org/10.1021/cr500119k
47.
47. A. B. Kolomeisky and M. E. Fisher, “ Molecular motors: A theorist's perspective,” Annu. Rev. Phys. Chem. 58, 675695 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104532
48.
48.In some cases, part of the free energy is applied against a chemical potential, in a manner very similar to the way chemical reactions use the free energy to synthesize new compounds.
49.
49. M. V. Vinogradova, V. S. Reddy, A. S. N. Reddy, E. P. Sablin, and R. J. Fletterick, “ Crystal structure of kinesin regulated by - calmodulin,” J. Biol. Chem. 279, 2350423509 (2004).
http://dx.doi.org/10.1074/jbc.M400741200
50.
50. R. A. Cross, “ The kinetic mechanism of kinesin,” Trends Biochem. Sci. 29, 301309 (2004).
http://dx.doi.org/10.1016/j.tibs.2004.04.010
51.
51. C. L. Asbury, A. N. Fehr, and S. M. Block, “ Kinesin moves by an asymmetric hand-over-hand mechanism,” Science 302, 21302134 (2003).
http://dx.doi.org/10.1126/science.1092985
52.
52. A. Yildiz, M. Tomishiga, R. D. Vale, and P. R. Selvin, “ Kinesin walks hand-over-hand,” Science 303, 676678 (2004).
http://dx.doi.org/10.1126/science.1093753
53.
53. M. Nishiyama, H. Higuchi, and T. Yanagida, “ Chemomechanical coupling of the forward and backward steps of single kinesin molecules,” Nat. Cell Biol. 4, 790797 (2002).
http://dx.doi.org/10.1038/ncb857
54.
54. N. J. Carter and R. A. Cross, “ Mechanics of the kinesin step,” Nature 435, 308312 (2005).
http://dx.doi.org/10.1038/nature03528
55.
55. S. M. Block, “ Kinesin motor mechanics: Binding, stepping, tracking, gating, and limping,” Biophys. J. 92, 29862995 (2007).
http://dx.doi.org/10.1529/biophysj.106.100677
56.
56. B. E. Clancy, W. M. Behnke-Parks, J. O. L. Andreasson, S. S. Rosenfeld, and S. M. Block, “ A universal pathway for kinesin stepping,” Nat. Struct. Mol. Biol. 18, 10201027 (2011).
http://dx.doi.org/10.1038/nsmb.2104
57.
57. N. J. Carter and R. A. Cross, “ Kinesin backsteps,” Biochem. Soc. Trans. 40, 400403 (2012).
http://dx.doi.org/10.1042/BST20120008
58.
58. A. W. C. Lau, D. Lacoste, and K. Mallick, “ Nonequilibrium fluctuations and mechanochemical couplings of a molecular motor,” Phys. Rev. Lett. 99, 158102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.158102
59.
59. W. Wang, L. Cao, C. Wang, B. Gigant, and M. Knossow, “ Kinesin, 30 years later: Recent insights from structural studies,” Protein Sci. 24, 10471056 (2015).
http://dx.doi.org/10.1002/pro.2697
60.
60. V. Belyy and A. Yildiz, “ Processive cytoskeletal motors studied with single-molecule fluorescence techniques,” FEBS Lett. 588, 35203525 (2014).
http://dx.doi.org/10.1016/j.febslet.2014.05.040
61.
61. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures in Physics ( Addison-Wesley, 1963), Vol. I, Sec. 46.
62.
62. A. Yildiz and R. D. Vale, “ Tracking movements of the microtubule motors kinesin and dynein using total internal reflection fluorescence microscopy,” Cold Spring Harbor protocols (2015).
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/3/10.1063/1.4945792
Loading
/content/aca/journal/sdy/3/3/10.1063/1.4945792
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/3/10.1063/1.4945792
2016-04-28
2016-12-09

Abstract

We have argued previously [Szoke , FEBS Lett. , 18–20 (2003); Curr. Chem. Biol. , 53–57 (2007)] that energy utilization and evolution are emergent properties based on a small number of established laws of physics and chemistry. The relevant laws constitute a framework for biology on a level intermediate between quantum chemistry and cell biology. There are legitimate questions whether these concepts are valid at the mesoscopic level. Such systemsfluctuate appreciably, so it is not clear what their efficiency is. Advances in fluctuation theorems allow the description of such systems on a molecular level. We attempt to clarify this topic and bridge the biochemical and physical descriptions of mesoscopic systems.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/3/1.4945792.html;jsessionid=P7vYsnMRO_NUyxo_Bu3uwSG4.x-aip-live-02?itemId=/content/aca/journal/sdy/3/3/10.1063/1.4945792&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/3/10.1063/1.4945792&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/3/10.1063/1.4945792'
Right1,Right2,Right3,