Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/3/10.1063/1.4948539
1.
1. H. van den Bedem and J. S. Fraser, “ Integrative, dynamic structural biology at atomic resolution-it's about time,” Nat. Methods 12, 307318 (2015).
http://dx.doi.org/10.1038/nmeth.3324
2.
2. R. P. Rambo and J. A. Tainer, “ Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering,” Curr. Opin. Struct. Biol. 20, 128137 (2010).
http://dx.doi.org/10.1016/j.sbi.2009.12.015
3.
3. C. Kupitz, S. Basu, I. Grotjohann, R. Fromme, N. A. Zatsepin, K. N. Rendek, M. S. Hunter, R. L. Shoeman, T. A. White, D. Wang, D. James, J. H. Yang, D. E. Cobb, B. Reeder, R. G. Sierra, H. Liu, A. Barty, A. L. Aquila, D. Deponte, R. A. Kirian, S. Bari, J. J. Bergkamp, K. R. Beyerlein, M. J. Bogan, C. Caleman, T. C. Chao, C. E. Conrad, K. M. Davis, H. Fleckenstein, L. Galli, S. P. Hau-Riege, S. Kassemeyer, H. Laksmono, M. Liang, L. Lomb, S. Marchesini, A. V. Martin, M. Messerschmidt, D. Milathianaki, K. Nass, A. Ros, S. Roy-Chowdhury, K. Schmidt, M. Seibert, J. Steinbrener, F. Stellato, L. Yan, C. Yoon, T. A. Moore, A. L. Moore, Y. Pushkar, G. J. Williams, S. Boutet, R. B. Doak, U. Weierstall, M. Frank, H. N. Chapman, J. C. H. Spence, and P. Fromme, “ Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser,” Nature 513, 261265 (2014).
http://dx.doi.org/10.1038/nature13453
4.
4. J. Tenboer, S. Basu, N. Zatsepin, K. Pande, D. Milathianaki, M. Frank, M. Hunter, S. Boutet, G. J. Williams, J. E. Koglin, D. Oberthuer, M. Heymann, C. Kupitz, C. Conrad, J. Coe, S. Roy-Chowdhury, U. Weierstall, D. James, D. Wang, T. Grant, A. Barty, O. Yefanov, J. Scales, C. Gati, C. Seuring, V. Srajer, R. Henning, P. Schwander, R. Fromme, A. Ourmazd, K. Moffat, J. J. Van Thor, J. C. H. Spence, P. Fromme, H. N. Chapman, and M. Schmidt, “ Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein,” Science 346, 12421246 (2014).
http://dx.doi.org/10.1126/science.1259357
5.
5. I. Bahar and A. J. Rader, “ Coarse-grained normal mode analysis in structural biology,” Curr. Opin. Struct. Biol. 15, 586592 (2005).
http://dx.doi.org/10.1016/j.sbi.2005.08.007
6.
6. D. Riccardi, Q. Cui, and G. N. Phillips, Jr., “ Application of elastic network models to proteins in the crystalline state,” Biophys. J. 96, 464475 (2009).
http://dx.doi.org/10.1016/j.bpj.2008.10.010
7.
7. K. Suhre and Y. H. Sanejouand, “ ElNemo: A normal mode web server for protein movement analysis and the generation of templates for molecular replacement,” Nucleic Acids Res. 32, W610W614 (2004).
http://dx.doi.org/10.1093/nar/gkh368
8.
8. P. Gros, W. F. van Gunsteren, and W. G. Hol, “ Inclusion of thermal motion in crystallographic structures by restrained molecular dynamics,” Science 249, 11491152 (1990).
http://dx.doi.org/10.1126/science.2396108
9.
9. E. J. Levin, D. A. Kondrashov, G. E. Wesenberg, and G. N. Phillips, Jr., “ Ensemble refinement of protein crystal structures: validation and application,” Structure 15, 10401052 (2007).
http://dx.doi.org/10.1016/j.str.2007.06.019
10.
10. B. T. Burnley, P. V. Afonine, P. D. Adams, and P. Gros, “ Modelling dynamics in protein crystal structures by ensemble refinement,” Elife 1, e00311 (2012).
http://dx.doi.org/10.7554/eLife.00311
11.
11. J. Ahlert, E. Shepard, N. Lomovskaya, E. Zazopoulos, A. Staffa, B. O. Bachmann, K. Huang, L. Fonstein, A. Czisny, R. E. Whitwam, C. M. Farnet, and J. S. Thorson, “ The calicheamicin gene cluster and its iterative type I enediyne PKS,” Science 297, 11731176 (2002).
http://dx.doi.org/10.1126/science.1072105
12.
12. J. S. Thorson, E. L. Sievers, J. Ahlert, E. Shepard, R. E. Whitwam, K. C. Onwueme, and M. Ruppen, “ Understanding and exploiting nature's chemical arsenal: The past, present and future of calicheamicin research,” Curr. Pharm. Des. 6, 18411879 (2000).
http://dx.doi.org/10.2174/1381612003398564
13.
13. U. Galm, M. H. Hager, S. G. Van Lanen, J. Ju, J. S. Thorson, and B. Shen, “ Antitumor antibiotics: Bleomycin, enediynes, and mitomycin,” Chem. Rev. 105, 739758 (2005).
http://dx.doi.org/10.1021/cr030117g
14.
14. N. Zein, A. M. Sinha, W. J. McGahren, and G. A. Ellestad, “ Calicheamicin gamma 1I: An antitumor antibiotic that cleaves double-stranded DNA site specifically,” Science 240, 11981201 (1988).
http://dx.doi.org/10.1126/science.3240341
15.
15. N. Zein, M. Poncin, R. Nilakantan, and G. A. Ellestad, “ Calicheamicin gamma 1I and DNA: Molecular recognition process responsible for site-specificity,” Science 244, 697699 (1989).
http://dx.doi.org/10.1126/science.2717946
16.
16. J. J. De Voss, J. J. Hangeland, and C. A. Townsend, “ Characterization of the in vitro cyclization chemistry of calicheamicin and its relation to DNA cleavage,” J. Am. Chem. Soc. 112, 45544556 (1990).
http://dx.doi.org/10.1021/ja00167a069
17.
17. A. G. Myers, S. B. Cohen, and B. M. Kwon, “ A study of the reaction of calicheamicin.gamma.1 with glutathione in the presence of double-stranded DNA,” J. Am. Chem. Soc. 116, 12551271 (1994).
http://dx.doi.org/10.1021/ja00083a012
18.
18. M. Chatterjee, K. D. Cramer, and C. A. Townsend, “ Kinetic nature of thiol activation in DNA cleavage by calicheamicin,” J. Am. Chem. Soc. 115, 33743375 (1993).
http://dx.doi.org/10.1021/ja00061a064
19.
19. S. L. Walker, A. H. Andreotti, and D. E. Kahne, “ NMR characterization of calicheamicin gamma1i bound to DNA,” Tetrahedron 50, 13511360 (1994).
http://dx.doi.org/10.1016/S0040-4020(01)80623-2
20.
20. R. A. Kumar, N. Ikemoto, and D. J. Patel, “ Solution structure of the calicheamicin gamma 1I-DNA complex,” J. Mol. Biol. 265, 187201 (1997).
http://dx.doi.org/10.1006/jmbi.1996.0718
21.
21. A. D. Ricart, “ Antibody-drug conjugates of calicheamicin derivative: Gemtuzumab ozogamicin and inotuzumab ozogamicin,” Clin. Cancer Res. 17, 64176427 (2011).
http://dx.doi.org/10.1158/1078-0432.CCR-11-0486
22.
22. P. Trail, “ Antibody drug conjugates as cancer therapeutics,” Antibodies 2, 113129 (2013).
http://dx.doi.org/10.3390/antib2010113
23.
23. Z. X. Liang, “ Complexity and simplicity in the biosynthesis of enediyne natural products,” Nat. Prod. Rep. 27, 499528 (2010).
http://dx.doi.org/10.1039/b908165h
24.
24. R. Kong, L. P. Goh, C. W. Liew, Q. S. Ho, E. Murugan, B. Li, K. Tang, and Z. X. Liang, “ Characterization of a carbonyl-conjugated polyene precursor in 10-membered enediyne biosynthesis,” J. Am. Chem. Soc. 130, 81428143 (2008).
http://dx.doi.org/10.1021/ja8019643
25.
25. K. Belecki, J. M. Crawford, and C. A. Townsend, “ Production of octaketide polyenes by the calicheamicin polyketide synthase CalE8: Implications for the biosynthesis of enediyne core structures,” J. Am. Chem. Soc. 131, 1256412566 (2009).
http://dx.doi.org/10.1021/ja904391r
26.
26. G. P. Horsman, Y. Chen, J. S. Thorson, and B. Shen, “ Polyketide synthase chemistry does not direct biosynthetic divergence between 9- and 10-membered enediynes,” Proc. Natl. Acad. Sci. U.S.A. 107, 1133111335 (2010).
http://dx.doi.org/10.1073/pnas.1003442107
27.
27. K. Belecki and C. A. Townsend, “ Biochemical determination of enzyme-bound metabolites: Preferential accumulation of a programmed octaketide on the enediyne polyketide synthase CalE8,” J. Am. Chem. Soc. 135, 1433914348 (2013).
http://dx.doi.org/10.1021/ja406697t
28.
28. C. Zhang, B. R. Griffith, Q. Fu, C. Albermann, X. Fu, I. K. Lee, L. Li, and J. S. Thorson, “ Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions,” Science 313, 12911294 (2006).
http://dx.doi.org/10.1126/science.1130028
29.
29. A. Chang, S. Singh, K. E. Helmich, R. D. Goff, C. A. Bingman, J. S. Thorson, and G. N. Phillips, Jr., “ Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity,” Proc. Natl. Acad. Sci. U.S.A. 108, 1764917654 (2011).
http://dx.doi.org/10.1073/pnas.1108484108
30.
30. H. D. Johnson and J. S. Thorson, “ Characterization of CalE10, the N-oxidase involved in calicheamicin hydroxyaminosugar formation,” J. Am. Chem. Soc. 130, 1766217663 (2008).
http://dx.doi.org/10.1021/ja807557a
31.
31. S. Singh, A. Chang, K. E. Helmich, C. A. Bingman, R. L. Wrobel, E. T. Beebe, S. Makino, D. J. Aceti, K. Dyer, G. L. Hura, M. Sunkara, A. J. Morris, G. N. Phillips, Jr., and J. S. Thorson, “ Structural and functional characterization of CalS11, a TDP-rhamnose 3′-O-methyltransferase involved in calicheamicin biosynthesis,” ACS Chem. Biol. 8, 16321639 (2013).
http://dx.doi.org/10.1021/cb400068k
32.
32. S. Singh, K. Michalska, L. Bigelow, M. Endres, M. K. Kharel, G. Babnigg, R. M. Yennamalli, C. A. Bingman, A. Joachimiak, J. S. Thorson, and G. N. Phillips, Jr., “ Structural characterization of CalS8, a TDP-α-D-glucose dehydrogenase involved in calicheamicin aminodideoxypentose biosynthesis,” J. Biol. Chem. 290, 2624926258 (2015).
http://dx.doi.org/10.1074/jbc.M115.673459
33.
33. E. Sasaki, X. Zhang, H. G. Sun, M. Y. Lu, T. L. Liu, A. Ou, J. Y. Li, Y. H. Chen, S. E. Ealick, and H. W. Liu, “ Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis,” Nature 510, 427431 (2014).
http://dx.doi.org/10.1038/nature13256
34.
34. H. Song, R. Xu, and Z. Guo, “ Identification and characterization of a methionine gamma-lyase in the calicheamicin biosynthetic cluster of micromonospora echinospora,” Chembiochem 16, 100109 (2015).
http://dx.doi.org/10.1002/cbic.201402489
35.
35. K. Tan, L. Bigelow, R. Jedrzejczak, G. Babnigg, C. A. Bingman, R. M. Yennamalli, S. Singh, M. K. Kharel, J. S. Thorson, G. N. Phillips, Jr., and A. Joachimiak, “ The crystal structure of cystathione gamma lyase (CalE6) from Micromonospora echinospora,” Protein Data Bank PDB 4Q31 (2014).
36.
36. W. H. Eschenfeldt, M. Makowska-Grzyska, L. Stols, M. I. Donnelly, R. Jedrzejczak, and A. Joachimiak, “ New LIC vectors for production of proteins from genes containing rare codons,” J. Struct. Funct. Genomics 14, 135144 (2013).
http://dx.doi.org/10.1007/s10969-013-9163-9
37.
37. Y. Kim, G. Babnigg, R. Jedrzejczak, W. H. Eschenfeldt, H. Li, N. Maltseva, C. Hatzos-Skintges, M. Gu, M. Makowska-Grzyska, R. Wu, H. An, G. Chhor, and A. Joachimiak, “ High-throughput protein purification and quality assessment for crystallization,” Methods 55, 1228 (2011).
http://dx.doi.org/10.1016/j.ymeth.2011.07.010
38.
38. G. Rosenbaum, R. W. Alkire, G. Evans, F. J. Rotella, K. Lazarski, R. G. Zhang, S. L. Ginell, N. Duke, I. Naday, J. Lazarz, M. J. Molitsky, L. Keefe, J. Gonczy, L. Rock, R. Sanishvili, M. A. Walsh, E. Westbrook, and A. Joachimiak, “ The structural biology center 19ID undulator beamline: Facility specifications and protein crystallographic results,” J. Synchrotron Rad. 13, 3045 (2006).
http://dx.doi.org/10.1107/S0909049505036721
39.
39. W. Minor, M. Cymborowski, Z. Otwinowski, and M. Chruszcz, “ HKL-3000: The integration of data reduction and structure solution–from diffraction images to an initial model in minutes,” Acta Crystallogr. D Biol. Crystallogr. 62, 859866 (2006).
http://dx.doi.org/10.1107/S0907444906019949
40.
40. T. R. Schneider and G. M. Sheldrick, “ Substructure solution with SHELXD,” Acta Crystallogr. D Biol. Crystallogr. 58, 17721779 (2002).
http://dx.doi.org/10.1107/S0907444902011678
41.
41. Z. Otwinowski, “ Isomorphous replacement and anomalous scattering,” edited by W. Wolf, P. R. Evans, and A. G. W. Leslie, in Proceedings of the CCP4 Study Weekend, Daresbury Laboratory, Warrington (1991), pp. 8086.
42.
42. K. Cowtan and P. Main, “ Miscellaneous algorithms for density modification,” Acta Crystallogr. D Biol. Crystallogr. 54, 487493 (1998).
http://dx.doi.org/10.1107/S0907444997011980
43.
43. S. X. Cohen, R. J. Morris, F. J. Fernandez, M. Ben Jelloul, M. Kakaris, V. Parthasarathy, V. S. Lamzin, G. J. Kleywegt, and A. Perrakis, “ Towards complete validated models in the next generation of ARP/wARP,” Acta Crystallogr. D Biol. Crystallogr. 60, 22222229 (2004).
http://dx.doi.org/10.1107/S0907444904027556
44.
44. P. Emsley and K. Cowtan, “ Coot: Model-building tools for molecular graphics,” Acta Crystallogr. D Biol. Crystallogr. 60, 21262132 (2004).
http://dx.doi.org/10.1107/S0907444904019158
45.
45. P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, and P. H. Zwart, “ PHENIX: A comprehensive Python-based system for macromolecular structure solution,” Acta Crystallogr. D Biol. Crystallogr. 66, 213221 (2010).
http://dx.doi.org/10.1107/S0907444909052925
46.
46.The PyMOL Molecular Graphics System, Version 1.3r1 Schrodinger, LLC. (2010).
47.
47. E. Krissinel and K. Henrick, “ Inference of macromolecular assemblies from crystalline state,” J. Mol. Biol. 372, 774797 (2007).
http://dx.doi.org/10.1016/j.jmb.2007.05.022
48.
48. V. B. Chen, W. B. Arendall III, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “ MolProbity: All-atom structure validation for macromolecular crystallography,” Acta Crystallogr. D Biol. Crystallogr. 66, 1221 (2010).
http://dx.doi.org/10.1107/S0907444909042073
49.
49. R. Yennamalli, R. Arangarasan, A. Bryden, M. Gleicher, and G. N. Phillips, Jr., “ Using a commodity high-definition television for collaborative structural biology,” J. Appl. Crystallogr. 47, 11531157 (2014).
http://dx.doi.org/10.1107/S160057671400939X
50.
50. A. J. M. Martin, I. Walsh, and S. C. E. Tosatto, “ MOBI: A web server to define and visualize structural mobility in NMR protein ensembles,” Bioinformatics 26, 29162917 (2010).
http://dx.doi.org/10.1093/bioinformatics/btq537
51.
51. T. Karaki, D. Sato, A. Shimizu, T. Nozaki, and S. Harada, “ Reaction intermediate structure of Entamoeba histolytica methionine gamma-lyase 1 containing Michaelis complex and methionine imine-pyridoxamine-5′-phosphate,” Protein Data Bank, PDB 3AEM (2010).
52.
52. T. Karaki, D. Sato, A. Shimizu, T. Nozaki, and S. Harada, “ Crystal structure of Entamoeba histolytica methionine gamma-lyase 1,” Protein Data Bank, PDB 3ACZ (2010).
53.
53. H. P. Ngo, N. M. Cerqueira, J. K. Kim, M. K. Hongn, P. A. Fernandes, M. J. Ramos, and L. W. Kang, “ PLP undergoes conformational changes during the course of an enzymatic reaction,” Acta Crystallogr. D Biol. Crystallogr. 70, 596606 (2014).
http://dx.doi.org/10.1107/S1399004713031283
54.
54. S. V. Revtovich, N. G. Faleev, E. A. Morozova, N. V. Anufrieva, A. D. Nikulin, and T. V. Demidkina, “ Crystal structure of the external aldimine of Citrobacter freundii methionine γ-lyase with glycine provides insight in mechanisms of two stages of physiological reaction and isotope exchange of α- and β-protons of competitive inhibitors,” Biochimie 101, 161167 (2014).
http://dx.doi.org/10.1016/j.biochi.2014.01.007
55.
55. N. A. Kuznetsov, N. G. Faleev, A. A. Kuznetsova, E. A. Morozova, S. V. Revtovich, N. V. Anufrieva, A. D. Nikulin, O. S. Fedorova, and T. V. Demidkina, “ Pre-steady-state kinetic and structural analysis of interaction of methionine γ-lyase from Citrobacter freundii with inhibitors,” J. Biol. Chem. 290, 671681 (2015).
http://dx.doi.org/10.1074/jbc.M114.586511
56.
56. A. Nijulin, S. Revtovich, E. Morozova, N. Nevskaya, S. Nikonov, M. Garber, and T. Demidkina, “ High-resolution structure of methionine gamma-lyase from Citrobacter freundii,” Acta Crystallogr. D Biol. Crystallogr. 64, 211218 (2008).
http://dx.doi.org/10.1107/S0907444907065390
57.
57. A. C. Eliot and J. F. Kirsch, “ Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations,” Annu. Rev. Biochem. 73, 383415 (2004).
http://dx.doi.org/10.1146/annurev.biochem.73.011303.074021
58.
58. M. D. Toney, “ Controlling reaction specificity in pyridoxal phosphate enzymes,” Biochim. Biophys. Acta. 1814, 14071418 (2011).
http://dx.doi.org/10.1016/j.bbapap.2011.05.019
59.
59. Q. Sun, R. Collins, S. Huang, L. Holmberg-Schiavone, G. S. Anand, C. H. Tan, S. van-den-Berg, L. W. Deng, P. K. Moore, T. Karlberg, and J. Sivaraman, “ Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H(2)S,” J. Biol. Chem. 284, 30763085 (2009).
http://dx.doi.org/10.1074/jbc.M805459200
60.
60. M. V. Shapovalov and R. L. Dunbrack, Jr., “ A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions,” Structure 19, 844858 (2011).
http://dx.doi.org/10.1016/j.str.2011.03.019
61.
61.See supplementary material at http://dx.doi.org/10.1063/1.4948539 for the alignment of CalE6 complex structures (PDB entries 4Q31 and 4U1T, chains A-D) highlighting the local side-chain conformational change of Arg 253 due to D7G variation and consequent loss of intersubunit salt bridges while the overall structure is not affected.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/3/10.1063/1.4948539
Loading
/content/aca/journal/sdy/3/3/10.1063/1.4948539
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/3/10.1063/1.4948539
2016-04-29
2016-12-04

Abstract

CalE6 from is a (pyridoxal 5′ phosphate) PLP-dependent methionine -lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid complex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structuralanalysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/3/1.4948539.html;jsessionid=MouMN6Hvgi2bpOosBr-C9vCF.x-aip-live-06?itemId=/content/aca/journal/sdy/3/3/10.1063/1.4948539&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/3/10.1063/1.4948539&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/3/10.1063/1.4948539'
Right1,Right2,Right3,