Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/3/10.1063/1.4949538
1.
1. G. Sciaini and R. J. D. Miller, “ Femtosecond electron diffraction: Heralding the era of atomically resolved dynamics,” Rep. Proj. Phys. 74, 096101 (2011).
http://dx.doi.org/10.1088/0034-4885/74/9/096101
2.
2. R. J. D. Miller, “ Femtosecond crystallography using ultrabright electron and x-ray sources: Capturing chemistry in action,” Science 343, 1108 (2014).
http://dx.doi.org/10.1126/science.1248488
3.
3. R. J. D. Miller, “ Mapping atomic motions with ultrabright electrons: The chemists' Gedanken experiment enters the lab frame,” Ann. Rev. Phys. Chem. 65, 583 (2014).
http://dx.doi.org/10.1146/annurev-physchem-040412-110117
4.
4. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “ An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382 (2003).
http://dx.doi.org/10.1126/science.1090052
5.
5. H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, “ Direct imaging of transient molecular structures with ultrafast diffraction,” Science 291, 458 (2001).
http://dx.doi.org/10.1126/science.291.5503.458
6.
6. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. Miller, “ Femtosecond electron diffraction studies of strongly driven structural phase transitions,” Chem. Phys. 299, 285 (2004).
http://dx.doi.org/10.1016/j.chemphys.2003.11.040
7.
7. S. Nie, X. Wang, H. Park, R. Clinite, and J. Cao, “ Measurement of the electronic Grüneisen constant using femtosecond electron diffraction,” Phys. Rev. Lett. 96, 025901 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.025901
8.
8. T. Ishikawa, S. A. Hayes, S. Keskin, G. Corthey, M. Hada, K. Pichugin, A. Marx, J. Hirscht, K. Shionuma, K. Onda, Y. Okimoto, S.-Y. Koshihara, T. Yamamoto, H. Cui, M. Nomura, Y. Oshima, M. Abdel-Jawad, R. Kato, and R. J. D. Miller, “ Direct observation of collective modes coupled to molecular orbital–driven charge transfer,” Science 350, 1501 (2015).
http://dx.doi.org/10.1126/science.aab3480
9.
9. M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. N. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. D. Miller, “ Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
http://dx.doi.org/10.1038/ncomms4863
10.
10. L. Waldecker, R. Bertoni, and R. Ernstorfer, “ Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit,” J. Appl. Phys. 117, 044903 (2015).
http://dx.doi.org/10.1063/1.4906786
11.
11. C. Gerbig, A. Senftleben, S. Morgenstern, C. Sarpe, and T. Baumert, “ Spatio-temporal resolution studies on a highly compact ultrafast electron diffractometer,” New J. Phys. 17, 043050 (2015).
http://dx.doi.org/10.1088/1367-2630/17/4/043050
12.
12. F. M. Rudakov, J. B. Hastings, D. H. Dowell, J. F. Schmerge, and P. M. Weber, “ Megavolt electron beams for ultrafast time-resolved electron diffraction,” AIP Conf. Proc. 845, 1287 (2006).
http://dx.doi.org/10.1063/1.2263560
13.
13. J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “ Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
http://dx.doi.org/10.1063/1.2372697
14.
14. J. Yang, K. Kan, N. Naruse, Y. Yoshida, K. Tanimura, and J. Urakawa, “ 100-femtosecond MeV electron source for ultrafast electron diffraction,” Radiat. Phys. Chem. 78, 1106 (2009).
http://dx.doi.org/10.1016/j.radphyschem.2009.05.009
15.
15. P. Zhu, Y. Zhu, Y. Hidaka, L. Wu, J. Cao, H. Berger, J. Geck, R. Kraus, S. Pjerov, Y. Shen, R. I. Tobey, J. P. Hill, and X. J. Wang, “ Femtosecond time-resolved MeV electron diffraction,” New J. Phys. 17, 063004 (2015).
http://dx.doi.org/10.1088/1367-2630/17/6/063004
16.
16. R. K. Li and P. Musumeci, “ Single-shot MeV transmission electron microscopy with picosecond temporal resolution,” Phys. Rev. Appl. 2, 024003 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.2.024003
17.
17. D. Xiang, F. Fu, J. Zhang, X. Huang, L. Wang, X. Wang, and W. Wan, “ Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution,” Nucl. Instrum. Meth. A 759, 74 (2014).
http://dx.doi.org/10.1016/j.nima.2014.05.068
18.
18. S. P. Weathersby, G. Brown, M. Centurion, T. F. Chase, R. Coffee, J. Corbett, J. P. Eichner, J. C. Frisch, A. R. Fry, M. Gühr, N. Hartmann, C. Hast, R. Hettel, R. K. Jobe, E. N. Jongewaard, J. R. Lewandowski, R. K. Li, A. M. Lindenberg, I. Makasyuk, J. E. May, D. McCormick, M. N. Nguyen, A. H. Reid, X. Shen, K. Sokolowski-Tinten, T. Vecchione, S. L. Vetter, J. Wu, J. Yang, H. A. Dürr, and X. J. Wang, “ Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory,” Rev. Sci. Instrum. 86, 073702 (2015).
http://dx.doi.org/10.1063/1.4926994
19.
19. F. Carbone, P. Musumeci, O. Luiten, and C. Hebert, “ A perspective on novel sources of ultrashort electron and x-ray pulses,” Chem. Phys. 392, 1 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.10.010
20.
20. S. Manz, A. Casandruc, D. Zhang, Y. Zhong, R. A. Loch, A. Marx, T. Hasegawa, L. C. Liu, S. Bayesteh, H. Delsim-Hashemi, M. Hoffmann, M. Felber, M. Hachmann, F. Mayet, J. Hirscht, S. Keskin, M. Hada, S. W. Epp, K. Flottmann, and R. J. D. Miller, “ Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution,” Faraday Discuss. 177, 467 (2015).
http://dx.doi.org/10.1039/C4FD00204K
21.
21. D. L. Adams, H. B. Nielsen, and M. A. Van Hove, “ Quantitative analysis of low-energy-electron diffraction: Application to Pt(111),” Phys. Rev. B 20, 4789 (1979).
http://dx.doi.org/10.1103/PhysRevB.20.4789
22.
22. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “ Electric field effect in atomically thin carbon films,” Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
23.
23. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, “ Liquid exfoliation of layered materials,” Science 340, 1226419 (2013).
http://dx.doi.org/10.1126/science.1226419
24.
24. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “ Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898 (2013).
http://dx.doi.org/10.1021/nn400280c
25.
25. S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, “ Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids,” Annu. Rev. Mater. Res. 45, 1 (2015).
http://dx.doi.org/10.1146/annurev-matsci-070214-021034
26.
26. G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “ Recent advances in two-dimensional materials beyond graphene,” ACS Nano 9, 11509 (2015).
http://dx.doi.org/10.1021/acsnano.5b05556
27.
27. A. Gupta, T. Sakthivel, and S. Seal, “ Recent development in 2D materials beyond graphene,” Prog. Mater. Sci. 73, 44 (2015).
http://dx.doi.org/10.1016/j.pmatsci.2015.02.002
28.
28. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “ Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.57
29.
29. G. Binnig, C. F. Quate, and Ch. Gerber, “ Atomic-force microscope,” Phys. Rev. Lett. 56, 930 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.930
30.
30. A. Janzen, B. Krenzer, O. Heinz, P. Zhou, D. Thien, A. Hanisch, F.-J. Meyer zu Heringdorf, D. von der Linde, and M. Horn von Hoegen, “ A pulsed electron gun for ultrafast electron diffraction at surfaces,” Rev. Sci. Instrum. 78, 013906 (2007).
http://dx.doi.org/10.1063/1.2431088
31.
31. A. Hanisch-Blicharski, A. Janzen, B. Krenzer, S. Wall, F. Klasing, A. Kalus, T. Frigge, M. Kammler, and M. H. von Hoegen, “ Ultra-fast electron diffraction at surfaces: From nanoscale heat transport to driven phase transitions,” Ultramicroscopy 127, 2 (2013).
http://dx.doi.org/10.1016/j.ultramic.2012.07.017
32.
32. M. Müller, A. Paarmann, and R. Ernstorfer, “ Femtosecond electrons probing currents and atomic structure in nanomaterials,” Nat. Commun. 5, 5292 (2014).
http://dx.doi.org/10.1038/ncomms6292
33.
33. M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “ Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200 (2014).
http://dx.doi.org/10.1126/science.1250658
34.
34. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “ Ultrafast electron optics: Propagation dynamics of femtosecond electron packets,” J. Appl. Phys. 92, 1643 (2002).
http://dx.doi.org/10.1063/1.1487437
35.
35. Z. Tao, H. Zhang, P. M. Duxbury, M. Berz, and C.-Y. Ruan, “ Space charge effects in ultrafast electron diffraction and imaging,” J. Appl. Phys. 111, 044316 (2012).
http://dx.doi.org/10.1063/1.3685747
36.
36. T. P. Wangler, RF Linear Accelerators ( Wiley-VCH, New York, 1997).
37.
37. G. H. Kassier, K. Haupt, N. Erasmus, E. G. Rohwer, and H. Schwoerer, “ Achromatic reflectron compressor design for bright pulses in femtosecond electron diffraction,” J. Appl. Phys. 105, 113111 (2009).
http://dx.doi.org/10.1063/1.3132834
38.
38. M. Gao, H. Jean-Ruel, R. R. Cooney, J. Stampe, M. de Jong, M. Harb, G. Sciaini, G. Moriena, and R. J. D. Miller, “ Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering,” Opt. Express 20, 12048 (2012).
http://dx.doi.org/10.1364/OE.20.012048
39.
39. R. P. Chatelain, V. R. Morrison, C. Godbout, and B. J. Siwick, “ Ultrafast electron diffraction with radio-frequency compressed electron pulses,” Appl. Phys. Lett. 101, 081901 (2012).
http://dx.doi.org/10.1063/1.4747155
40.
40. Y. Wang and N. Gedik, “ Electron pulse compression with a practical reflectron design for ultrafast electron diffraction,” IEEE J. Quantum Electron. 18, 140 (2012).
http://dx.doi.org/10.1109/JSTQE.2011.2112339
41.
41. Y. Qi, M. Pei, D. Qi, Y. Yang, T. Jia, S. Zhang, and Z. Sun, “ Realizing ultrafast electron pulse self-compression by femtosecond pulse shaping technique,” J. Phys. Chem. Lett. 6, 3867 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01305
42.
42. R. Brogle, P. Muggli, P. Davis, G. Hairapetian, and C. Joshi, “ Studies of linear and nonlinear photoelectric emission for advanced accelerator applications,” in Proceedings of the 1995 Particle Accelerator Conference (1995), vol. 2, p. 1039.
43.
43. S. Tsujino, P. Beaud, E. Kirk, T. Vogel, H. Sehr, J. Gobrecht, and A. Wrulich, “ Ultrafast electron emission from metallic nanotip arrays induced by near infrared femtosecond laser pulses,” Appl. Phys. Lett. 92, 193501 (2008).
http://dx.doi.org/10.1063/1.2924290
44.
44. A. Paarmann, M. Gulde, M. Müller, S. Schäfer, S. Schweda, M. Maiti, C. Xu, T. Hohage, F. Schenk, C. Ropers, and R. Ernstorfer, “ Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study,” J. Appl. Phys. 112, 113109 (2012).
http://dx.doi.org/10.1063/1.4768204
45.
45. M. E. Swanwick, P. D. Keathley, A. Fallahi, P. R. Krogen, G. Laurent, J. Moses, F. X. Kärtner, and L. F. Velásquez-García, “ Nanostructured ultrafast silicon-tip optical field-emitter arrays,” Nano Lett. 14, 5035 (2014).
http://dx.doi.org/10.1021/nl501589j
46.
46. D. Ehberger, J. Hammer, M. Eisele, M. Krüger, J. Noe, A. Högele, and P. Hommelhoff, “ Highly coherent electron beam from a laser-triggered tungsten needle tip,” Phys. Rev. Lett. 114, 227601 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.227601
47.
47. A. Casandruc, G. Kassier, H. Zia, R. Bücker, and R. J. D. Miller, “ Fiber tip-based electron source,” J. Vac. Sci. Technol. B 33, 03C101 (2015).
http://dx.doi.org/10.1116/1.4902016
48.
48. S. Humphries, Jr., Principles of Charged Particle Acceleration ( Wiley-Interscience, New York, 1986).
49.
49. L. Veisz, G. Kurkin, K. Chernov, V. Tarnetsky, A. Apolonski, F. Krausz, and E. Fill, “ Hybrid dc-ac electron gun for fs-electron pulse generation,” New J. Phys. 9, 451 (2007).
http://dx.doi.org/10.1088/1367-2630/9/12/451
50.
50. W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “ Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
http://dx.doi.org/10.1063/1.1927699
51.
51. J. R. Dwyer, R. E. Jordan, C. T. Hebeisen, M. Harb, R. Ernstorfer, T. Dartigalongue, and R. J. D. Miller, “ Femtosecond electron diffraction: an atomic perspective of condensed phase dynamics,” J. Mod. Opt. 54, 905 (2007).
http://dx.doi.org/10.1080/09500340601095348
52.
52. M. W. van Mourik, W. J. Engelen, E. J. D. Vredenbregt, and O. J. Luiten, “ Ultrafast electron diffraction using an ultracold source,” Struct. Dyn. 1, 034302 (2014).
http://dx.doi.org/10.1063/1.4882074
53.
53. A. Fasolino, J. H. Los, and M. I. Katsnelson, “ Intrinsic ripples in graphene,” Nat. Mater. 6, 858 (2007).
http://dx.doi.org/10.1038/nmat2011
54.
54. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “ The structure of suspended graphene sheets,” Nature 446, 60 (2007).
http://dx.doi.org/10.1038/nature05545
55.
55. J. Brivio, D. T. L. Alexander, and A. Kis, “ Ripples and layers in ultrathin MoS2 membranes,” Nano Lett. 11, 5148 (2011).
http://dx.doi.org/10.1021/nl2022288
56.
56. F. O. Kirchner, S. Lahme, F. Krausz, and P. Baum, “ Coherence of femtosecond single electrons exceeds biomolecular dimensions,” New J. Phys. 15, 063021 (2013).
http://dx.doi.org/10.1088/1367-2630/15/6/063021
57.
57. J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, and L. Blaszczyk, “ Femtosecond electron diffraction for direct measurement of ultrafast atomic motions,” Appl. Phys. Lett. 83, 1044 (2003).
http://dx.doi.org/10.1063/1.1593831
58.
58. B. J. Siwick, A. A. Green, C. T. Hebeisen, and R. J. D. Miller, “ Characterization of ultrashort electron pulses by electron-laser pulse cross correlation,” Opt. Lett. 30, 1057 (2005).
http://dx.doi.org/10.1364/OL.30.001057
59.
59. C. T. Hebeisen, R. Ernstorfer, M. Harb, T. Dartigalongue, R. E. Jordan, and R. J. Dwayne Miller, “ Femtosecond electron pulse characterization using laser ponderomotive scattering,” Opt. Lett. 31, 3517 (2006).
http://dx.doi.org/10.1364/OL.31.003517
60.
60. B. Barwick, D. J. Flannigan, and A. H. Zewail, “ Photon-induced near-field electron microscopy,” Nature 462, 902 (2009).
http://dx.doi.org/10.1038/nature08662
61.
61. R. Li, W. Huang, Y. Du, L. Yan, Q. Du, J. Shi, J. Hua, H. Chen, T. Du, H. Xu, and C. Tang, “ Note: Single-shot continuously time-resolved MeV ultrafast electron diffraction,” Rev. Sci. Instrum. 81, 036110 (2010).
http://dx.doi.org/10.1063/1.3361196
62.
62. M. Eichberger, N. Erasmus, K. Haupt, G. Kassier, A. v. Flotow, J. Demsar, and H. Schwoerer, “ Femtosecond streaking of electron diffraction patterns to study structural dynamics in crystalline matter,” Appl. Phys. Lett. 102, 121106 (2013).
http://dx.doi.org/10.1063/1.4798518
63.
63. F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, “ Laser streaking of free electrons at 25 keV,” Nat. Photon. 8, 52 (2014).
http://dx.doi.org/10.1038/nphoton.2013.315
64.
64. K. Flöttmann, “ ASTRA,” http://www.desy.de/~mpyflo/ (2000).
65.
65. D. H. Dowell and J. F. Schmerge, “ Quantum efficiency and thermal emittance of metal photocathodes,” Phys. Rev. ST Accel. Beams 12, 074201 (2009).
http://dx.doi.org/10.1103/PhysRevSTAB.12.074201
66.
66.AS-Photonics, “ SNLO,” http://www.as-photonics.com/snlo (2015).
67.
67. M. Aidelsburger, F. O. Kirchner, F. Krausz, and P. Baum, “ Single-electron pulses for ultrafast diffraction,” Proc. Natl. Acad. Sci. U.S.A. 107, 19714 (2010).
http://dx.doi.org/10.1073/pnas.1010165107
68.
68. P. Baum and A. H. Zewail, “ 4D attosecond imaging with free electrons: Diffraction methods and potential applications,” Chem. Phys. 366, 2 (2009).
http://dx.doi.org/10.1016/j.chemphys.2009.07.013
69.
69. H. Park and J. M. Zuo, “ Direct measurement of transient electric fields induced by ultrafast pulsed laser irradiation of silicon,” Appl. Phys. Lett. 94, 251103 (2009).
http://dx.doi.org/10.1063/1.3157270
70.
70. S. Schäfer, W. Liang, and A. H. Zewail, “ Structural dynamics and transient electric-field effects in ultrafast electron diffraction from surfaces,” Chem. Phys. Lett. 493, 11 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.04.049
71.
71. P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. Sheng, and J. Zhang, “ Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
http://dx.doi.org/10.1063/1.3521387
72.
72. R.-Z. Li, P. Zhu, L. Chen, J. Chen, J. Cao, Z.-M. Sheng, and J. Zhang, “ Simultaneous investigation of ultrafast structural dynamics and transient electric field by sub-picosecond electron pulses,” J. Appl. Phys. 115, 183507 (2014).
http://dx.doi.org/10.1063/1.4875659
73.
73. P. F. Zhu, Z. C. Zhang, L. Chen, R. Z. Li, J. J. Li, X. Wang, J. M. Cao, Z. M. Sheng, and J. Zhang, “ Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics,” Rev. Sci. Instrum. 81, 103505 (2010).
http://dx.doi.org/10.1063/1.3491994
74.
74. R.-Z. Li, P. Zhu, L. Chen, T. Xu, J. Chen, J. Cao, Z.-M. Sheng, and J. Zhang, “ Investigation of transient surface electric field induced by femtosecond laser irradiation of aluminum,” New J. Phys. 16, 103013 (2014).
http://dx.doi.org/10.1088/1367-2630/16/10/103013
75.
75. R. K. Raman, Z. Tao, T.-R. Han, and C.-Y. Ruan, “ Ultrafast imaging of photoelectron packets generated from graphite surface,” Appl. Phys. Lett. 95, 181108 (2009).
http://dx.doi.org/10.1063/1.3259779
76.
76. C. M. Scoby, R. K. Li, and P. Musumeci, “ Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump-probe experiments,” Ultramicroscopy 127, 14 (2013).
http://dx.doi.org/10.1016/j.ultramic.2012.07.015
77.
77. H. Park, Z. Hao, X. Wang, S. Nie, R. Clinite, and J. Cao, “ Synchronization of femtosecond laser and electron pulses with subpicosecond precision,” Rev. Sci. Instrum. 76, 083905 (2005).
http://dx.doi.org/10.1063/1.1994922
78.
78. A. Dolocan, M. Hengsberger, H. J. Neff, M. Barry, C. Cirelli, T. Greber, and J. Osterwalder, “ Electron-photon pulse correlator based on space-charge effects in a metal pinhole,” Jpn. J. Appl. Phys. 45, 285 (2006).
79.
79. A. Jablonski, F. Salvat, and C. J. Powell, NIST Electron Elastic-Scattering Cross-Section Database - Version 3.2 ( National Institute of Standards and Technology, Gaithersburg, MD, 2010).
80.
80. S. Tanuma, C. J. Powell, and D. R. Penn, “ Calculations of electron inelastic mean free paths. IX. data for 41 elemental solids over the 50 eV to 30 keV range,” Surf. Interface Anal. 43, 689 (2011).
http://dx.doi.org/10.1002/sia.3522
81.
81.See http://www.rsc.org/periodic-table for Royal Society of Chemistry, “Periodic Table” (2015).
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/3/10.1063/1.4949538
Loading
/content/aca/journal/sdy/3/3/10.1063/1.4949538
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/3/10.1063/1.4949538
2016-05-12
2016-12-09

Abstract

A compact electron source specifically designed for time-resolved diffraction studies of free-standing thin films and monolayers is presented here. The sensitivity to thin samples is achieved by extending the established technique of ultrafast electron diffraction to the “medium” energy regime (1–10 kV). An extremely compact design, in combination with low bunch charges, allows for high quality diffraction in a lensless geometry. The measured and simulated characteristics of the experimental system reveal sub-picosecond temporal resolution, while demonstrating the ability to produce high quality diffraction patterns from atomically thin samples.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/3/1.4949538.html;jsessionid=gCUXvtC_K69hKZT1mDmusC0D.x-aip-live-03?itemId=/content/aca/journal/sdy/3/3/10.1063/1.4949538&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/3/10.1063/1.4949538&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/3/10.1063/1.4949538'
Right1,Right2,Right3,