Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Sciaini and R. J. D. Miller, “ Femtosecond electron diffraction: Heralding the era of atomically resolved dynamics,” Rep. Proj. Phys. 74, 096101 (2011).
2. R. J. D. Miller, “ Femtosecond crystallography using ultrabright electron and x-ray sources: Capturing chemistry in action,” Science 343, 1108 (2014).
3. R. J. D. Miller, “ Mapping atomic motions with ultrabright electrons: The chemists' Gedanken experiment enters the lab frame,” Ann. Rev. Phys. Chem. 65, 583 (2014).
4. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “ An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382 (2003).
5. H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, “ Direct imaging of transient molecular structures with ultrafast diffraction,” Science 291, 458 (2001).
6. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. Miller, “ Femtosecond electron diffraction studies of strongly driven structural phase transitions,” Chem. Phys. 299, 285 (2004).
7. S. Nie, X. Wang, H. Park, R. Clinite, and J. Cao, “ Measurement of the electronic Grüneisen constant using femtosecond electron diffraction,” Phys. Rev. Lett. 96, 025901 (2006).
8. T. Ishikawa, S. A. Hayes, S. Keskin, G. Corthey, M. Hada, K. Pichugin, A. Marx, J. Hirscht, K. Shionuma, K. Onda, Y. Okimoto, S.-Y. Koshihara, T. Yamamoto, H. Cui, M. Nomura, Y. Oshima, M. Abdel-Jawad, R. Kato, and R. J. D. Miller, “ Direct observation of collective modes coupled to molecular orbital–driven charge transfer,” Science 350, 1501 (2015).
9. M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. N. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. D. Miller, “ Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
10. L. Waldecker, R. Bertoni, and R. Ernstorfer, “ Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit,” J. Appl. Phys. 117, 044903 (2015).
11. C. Gerbig, A. Senftleben, S. Morgenstern, C. Sarpe, and T. Baumert, “ Spatio-temporal resolution studies on a highly compact ultrafast electron diffractometer,” New J. Phys. 17, 043050 (2015).
12. F. M. Rudakov, J. B. Hastings, D. H. Dowell, J. F. Schmerge, and P. M. Weber, “ Megavolt electron beams for ultrafast time-resolved electron diffraction,” AIP Conf. Proc. 845, 1287 (2006).
13. J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “ Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
14. J. Yang, K. Kan, N. Naruse, Y. Yoshida, K. Tanimura, and J. Urakawa, “ 100-femtosecond MeV electron source for ultrafast electron diffraction,” Radiat. Phys. Chem. 78, 1106 (2009).
15. P. Zhu, Y. Zhu, Y. Hidaka, L. Wu, J. Cao, H. Berger, J. Geck, R. Kraus, S. Pjerov, Y. Shen, R. I. Tobey, J. P. Hill, and X. J. Wang, “ Femtosecond time-resolved MeV electron diffraction,” New J. Phys. 17, 063004 (2015).
16. R. K. Li and P. Musumeci, “ Single-shot MeV transmission electron microscopy with picosecond temporal resolution,” Phys. Rev. Appl. 2, 024003 (2014).
17. D. Xiang, F. Fu, J. Zhang, X. Huang, L. Wang, X. Wang, and W. Wan, “ Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution,” Nucl. Instrum. Meth. A 759, 74 (2014).
18. S. P. Weathersby, G. Brown, M. Centurion, T. F. Chase, R. Coffee, J. Corbett, J. P. Eichner, J. C. Frisch, A. R. Fry, M. Gühr, N. Hartmann, C. Hast, R. Hettel, R. K. Jobe, E. N. Jongewaard, J. R. Lewandowski, R. K. Li, A. M. Lindenberg, I. Makasyuk, J. E. May, D. McCormick, M. N. Nguyen, A. H. Reid, X. Shen, K. Sokolowski-Tinten, T. Vecchione, S. L. Vetter, J. Wu, J. Yang, H. A. Dürr, and X. J. Wang, “ Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory,” Rev. Sci. Instrum. 86, 073702 (2015).
19. F. Carbone, P. Musumeci, O. Luiten, and C. Hebert, “ A perspective on novel sources of ultrashort electron and x-ray pulses,” Chem. Phys. 392, 1 (2012).
20. S. Manz, A. Casandruc, D. Zhang, Y. Zhong, R. A. Loch, A. Marx, T. Hasegawa, L. C. Liu, S. Bayesteh, H. Delsim-Hashemi, M. Hoffmann, M. Felber, M. Hachmann, F. Mayet, J. Hirscht, S. Keskin, M. Hada, S. W. Epp, K. Flottmann, and R. J. D. Miller, “ Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution,” Faraday Discuss. 177, 467 (2015).
21. D. L. Adams, H. B. Nielsen, and M. A. Van Hove, “ Quantitative analysis of low-energy-electron diffraction: Application to Pt(111),” Phys. Rev. B 20, 4789 (1979).
22. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “ Electric field effect in atomically thin carbon films,” Science 306, 666 (2004).
23. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, “ Liquid exfoliation of layered materials,” Science 340, 1226419 (2013).
24. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “ Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898 (2013).
25. S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, “ Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids,” Annu. Rev. Mater. Res. 45, 1 (2015).
26. G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “ Recent advances in two-dimensional materials beyond graphene,” ACS Nano 9, 11509 (2015).
27. A. Gupta, T. Sakthivel, and S. Seal, “ Recent development in 2D materials beyond graphene,” Prog. Mater. Sci. 73, 44 (2015).
28. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “ Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57 (1982).
29. G. Binnig, C. F. Quate, and Ch. Gerber, “ Atomic-force microscope,” Phys. Rev. Lett. 56, 930 (1986).
30. A. Janzen, B. Krenzer, O. Heinz, P. Zhou, D. Thien, A. Hanisch, F.-J. Meyer zu Heringdorf, D. von der Linde, and M. Horn von Hoegen, “ A pulsed electron gun for ultrafast electron diffraction at surfaces,” Rev. Sci. Instrum. 78, 013906 (2007).
31. A. Hanisch-Blicharski, A. Janzen, B. Krenzer, S. Wall, F. Klasing, A. Kalus, T. Frigge, M. Kammler, and M. H. von Hoegen, “ Ultra-fast electron diffraction at surfaces: From nanoscale heat transport to driven phase transitions,” Ultramicroscopy 127, 2 (2013).
32. M. Müller, A. Paarmann, and R. Ernstorfer, “ Femtosecond electrons probing currents and atomic structure in nanomaterials,” Nat. Commun. 5, 5292 (2014).
33. M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “ Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200 (2014).
34. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “ Ultrafast electron optics: Propagation dynamics of femtosecond electron packets,” J. Appl. Phys. 92, 1643 (2002).
35. Z. Tao, H. Zhang, P. M. Duxbury, M. Berz, and C.-Y. Ruan, “ Space charge effects in ultrafast electron diffraction and imaging,” J. Appl. Phys. 111, 044316 (2012).
36. T. P. Wangler, RF Linear Accelerators ( Wiley-VCH, New York, 1997).
37. G. H. Kassier, K. Haupt, N. Erasmus, E. G. Rohwer, and H. Schwoerer, “ Achromatic reflectron compressor design for bright pulses in femtosecond electron diffraction,” J. Appl. Phys. 105, 113111 (2009).
38. M. Gao, H. Jean-Ruel, R. R. Cooney, J. Stampe, M. de Jong, M. Harb, G. Sciaini, G. Moriena, and R. J. D. Miller, “ Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering,” Opt. Express 20, 12048 (2012).
39. R. P. Chatelain, V. R. Morrison, C. Godbout, and B. J. Siwick, “ Ultrafast electron diffraction with radio-frequency compressed electron pulses,” Appl. Phys. Lett. 101, 081901 (2012).
40. Y. Wang and N. Gedik, “ Electron pulse compression with a practical reflectron design for ultrafast electron diffraction,” IEEE J. Quantum Electron. 18, 140 (2012).
41. Y. Qi, M. Pei, D. Qi, Y. Yang, T. Jia, S. Zhang, and Z. Sun, “ Realizing ultrafast electron pulse self-compression by femtosecond pulse shaping technique,” J. Phys. Chem. Lett. 6, 3867 (2015).
42. R. Brogle, P. Muggli, P. Davis, G. Hairapetian, and C. Joshi, “ Studies of linear and nonlinear photoelectric emission for advanced accelerator applications,” in Proceedings of the 1995 Particle Accelerator Conference (1995), vol. 2, p. 1039.
43. S. Tsujino, P. Beaud, E. Kirk, T. Vogel, H. Sehr, J. Gobrecht, and A. Wrulich, “ Ultrafast electron emission from metallic nanotip arrays induced by near infrared femtosecond laser pulses,” Appl. Phys. Lett. 92, 193501 (2008).
44. A. Paarmann, M. Gulde, M. Müller, S. Schäfer, S. Schweda, M. Maiti, C. Xu, T. Hohage, F. Schenk, C. Ropers, and R. Ernstorfer, “ Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study,” J. Appl. Phys. 112, 113109 (2012).
45. M. E. Swanwick, P. D. Keathley, A. Fallahi, P. R. Krogen, G. Laurent, J. Moses, F. X. Kärtner, and L. F. Velásquez-García, “ Nanostructured ultrafast silicon-tip optical field-emitter arrays,” Nano Lett. 14, 5035 (2014).
46. D. Ehberger, J. Hammer, M. Eisele, M. Krüger, J. Noe, A. Högele, and P. Hommelhoff, “ Highly coherent electron beam from a laser-triggered tungsten needle tip,” Phys. Rev. Lett. 114, 227601 (2015).
47. A. Casandruc, G. Kassier, H. Zia, R. Bücker, and R. J. D. Miller, “ Fiber tip-based electron source,” J. Vac. Sci. Technol. B 33, 03C101 (2015).
48. S. Humphries, Jr., Principles of Charged Particle Acceleration ( Wiley-Interscience, New York, 1986).
49. L. Veisz, G. Kurkin, K. Chernov, V. Tarnetsky, A. Apolonski, F. Krausz, and E. Fill, “ Hybrid dc-ac electron gun for fs-electron pulse generation,” New J. Phys. 9, 451 (2007).
50. W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “ Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
51. J. R. Dwyer, R. E. Jordan, C. T. Hebeisen, M. Harb, R. Ernstorfer, T. Dartigalongue, and R. J. D. Miller, “ Femtosecond electron diffraction: an atomic perspective of condensed phase dynamics,” J. Mod. Opt. 54, 905 (2007).
52. M. W. van Mourik, W. J. Engelen, E. J. D. Vredenbregt, and O. J. Luiten, “ Ultrafast electron diffraction using an ultracold source,” Struct. Dyn. 1, 034302 (2014).
53. A. Fasolino, J. H. Los, and M. I. Katsnelson, “ Intrinsic ripples in graphene,” Nat. Mater. 6, 858 (2007).
54. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “ The structure of suspended graphene sheets,” Nature 446, 60 (2007).
55. J. Brivio, D. T. L. Alexander, and A. Kis, “ Ripples and layers in ultrathin MoS2 membranes,” Nano Lett. 11, 5148 (2011).
56. F. O. Kirchner, S. Lahme, F. Krausz, and P. Baum, “ Coherence of femtosecond single electrons exceeds biomolecular dimensions,” New J. Phys. 15, 063021 (2013).
57. J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, and L. Blaszczyk, “ Femtosecond electron diffraction for direct measurement of ultrafast atomic motions,” Appl. Phys. Lett. 83, 1044 (2003).
58. B. J. Siwick, A. A. Green, C. T. Hebeisen, and R. J. D. Miller, “ Characterization of ultrashort electron pulses by electron-laser pulse cross correlation,” Opt. Lett. 30, 1057 (2005).
59. C. T. Hebeisen, R. Ernstorfer, M. Harb, T. Dartigalongue, R. E. Jordan, and R. J. Dwayne Miller, “ Femtosecond electron pulse characterization using laser ponderomotive scattering,” Opt. Lett. 31, 3517 (2006).
60. B. Barwick, D. J. Flannigan, and A. H. Zewail, “ Photon-induced near-field electron microscopy,” Nature 462, 902 (2009).
61. R. Li, W. Huang, Y. Du, L. Yan, Q. Du, J. Shi, J. Hua, H. Chen, T. Du, H. Xu, and C. Tang, “ Note: Single-shot continuously time-resolved MeV ultrafast electron diffraction,” Rev. Sci. Instrum. 81, 036110 (2010).
62. M. Eichberger, N. Erasmus, K. Haupt, G. Kassier, A. v. Flotow, J. Demsar, and H. Schwoerer, “ Femtosecond streaking of electron diffraction patterns to study structural dynamics in crystalline matter,” Appl. Phys. Lett. 102, 121106 (2013).
63. F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, “ Laser streaking of free electrons at 25 keV,” Nat. Photon. 8, 52 (2014).
64. K. Flöttmann, “ ASTRA,” (2000).
65. D. H. Dowell and J. F. Schmerge, “ Quantum efficiency and thermal emittance of metal photocathodes,” Phys. Rev. ST Accel. Beams 12, 074201 (2009).
66.AS-Photonics, “ SNLO,” (2015).
67. M. Aidelsburger, F. O. Kirchner, F. Krausz, and P. Baum, “ Single-electron pulses for ultrafast diffraction,” Proc. Natl. Acad. Sci. U.S.A. 107, 19714 (2010).
68. P. Baum and A. H. Zewail, “ 4D attosecond imaging with free electrons: Diffraction methods and potential applications,” Chem. Phys. 366, 2 (2009).
69. H. Park and J. M. Zuo, “ Direct measurement of transient electric fields induced by ultrafast pulsed laser irradiation of silicon,” Appl. Phys. Lett. 94, 251103 (2009).
70. S. Schäfer, W. Liang, and A. H. Zewail, “ Structural dynamics and transient electric-field effects in ultrafast electron diffraction from surfaces,” Chem. Phys. Lett. 493, 11 (2010).
71. P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. Sheng, and J. Zhang, “ Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
72. R.-Z. Li, P. Zhu, L. Chen, J. Chen, J. Cao, Z.-M. Sheng, and J. Zhang, “ Simultaneous investigation of ultrafast structural dynamics and transient electric field by sub-picosecond electron pulses,” J. Appl. Phys. 115, 183507 (2014).
73. P. F. Zhu, Z. C. Zhang, L. Chen, R. Z. Li, J. J. Li, X. Wang, J. M. Cao, Z. M. Sheng, and J. Zhang, “ Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics,” Rev. Sci. Instrum. 81, 103505 (2010).
74. R.-Z. Li, P. Zhu, L. Chen, T. Xu, J. Chen, J. Cao, Z.-M. Sheng, and J. Zhang, “ Investigation of transient surface electric field induced by femtosecond laser irradiation of aluminum,” New J. Phys. 16, 103013 (2014).
75. R. K. Raman, Z. Tao, T.-R. Han, and C.-Y. Ruan, “ Ultrafast imaging of photoelectron packets generated from graphite surface,” Appl. Phys. Lett. 95, 181108 (2009).
76. C. M. Scoby, R. K. Li, and P. Musumeci, “ Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump-probe experiments,” Ultramicroscopy 127, 14 (2013).
77. H. Park, Z. Hao, X. Wang, S. Nie, R. Clinite, and J. Cao, “ Synchronization of femtosecond laser and electron pulses with subpicosecond precision,” Rev. Sci. Instrum. 76, 083905 (2005).
78. A. Dolocan, M. Hengsberger, H. J. Neff, M. Barry, C. Cirelli, T. Greber, and J. Osterwalder, “ Electron-photon pulse correlator based on space-charge effects in a metal pinhole,” Jpn. J. Appl. Phys. 45, 285 (2006).
79. A. Jablonski, F. Salvat, and C. J. Powell, NIST Electron Elastic-Scattering Cross-Section Database - Version 3.2 ( National Institute of Standards and Technology, Gaithersburg, MD, 2010).
80. S. Tanuma, C. J. Powell, and D. R. Penn, “ Calculations of electron inelastic mean free paths. IX. data for 41 elemental solids over the 50 eV to 30 keV range,” Surf. Interface Anal. 43, 689 (2011).
81.See for Royal Society of Chemistry, “Periodic Table” (2015).

Data & Media loading...


Article metrics loading...



A compact electron source specifically designed for time-resolved diffraction studies of free-standing thin films and monolayers is presented here. The sensitivity to thin samples is achieved by extending the established technique of ultrafast electron diffraction to the “medium” energy regime (1–10 kV). An extremely compact design, in combination with low bunch charges, allows for high quality diffraction in a lensless geometry. The measured and simulated characteristics of the experimental system reveal sub-picosecond temporal resolution, while demonstrating the ability to produce high quality diffraction patterns from atomically thin samples.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd