Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. Zewail and J. Thomas, 4D Electron Microscopy: Imaging in Space and Time ( Imperial College Press, 2010).
R. J. D. Miller, “ Femtosecond crystallography with ultrabright electrons and x-rays: Capturing chemistry in action,” Science 343, 11081116 (2014).
H. N. Chapman, “ X-ray imaging beyond the limits,” Nat. Mater. 8, 299301 (2009).
W. Domcke and D. R. Yarkony, “ Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics,” Annu. Rev. Phys. Chem. 63, 325352 (2012).
D. Zhong and A. Zewail, “ Femtosecond real-time probing of reactions. 23. Studies of temporal, velocity, angular, and state dynamics from transition states to final products by femtosecond-resolved mass spectrometry,” J. Phys. Chem. A 102, 40314058 (1998).
H. Xu, T. Okino, and K. Yamanouchi, “ Tracing ultrafast hydrogen migration in allene in intense laser fields by triple-ion coincidence momentum imaging,” J. Chem. Phys. 131, 151102 (2009).
B. R. Heazlewood, M. J. T. Jordan, S. H. Kable, T. M. Selby, D. L. Osborn, B. C. Shepler, B. J. Braams, and J. M. Bowman, “ Roaming is the dominant mechanism for molecular products in acetaldehyde photodissociation,” Proc. Natl. Acad. Sci. U.S.A. 105, 1271912724 (2008).
M. P. Minitti, J. M. Budarz, A. Kirrander, J. S. Robinson, D. Ratner, T. J. Lane, D. Zhu, J. M. Glownia, M. Kozina, H. T. Lemke, M. Sikorski, Y. Feng, S. Nelson, K. Saita, B. Stankus, T. Northey, J. B. Hastings, and P. M. Weber, “ Imaging molecular motion: Femtosecond x-ray scattering of an electrocyclic chemical reaction,” Phys. Rev. Lett. 114, 255501 (2015).
E. Wollan, “ X-ray scattering and atomic structure,” Rev. Mod. Phys. 4, 205258 (1932).
L. Brockway, “ Electron diffraction by gas molecules,” Rev. Mod. Phys. 8, 231266 (1936).
P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F. J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H. D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, and J. Galayda, “ First lasing and operation of an angstrom-wavelength free-electron laser,” Nat. Photonics 4, 641647 (2010).
T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa, S. Goto, H. Hanaki, T. Hara, T. Hasegawa, T. Hatsui, A. Higashiya, T. Hirono, N. Hosoda, M. Ishii, T. Inagaki, Y. Inubushi, T. Itoga, Y. Joti, M. Kago, T. Kameshima, H. Kimura, Y. Kirihara, A. Kiyomichi, T. Kobayashi, C. Kondo, T. Kudo, H. Maesaka, X. M. Marechal, T. Masuda, S. Matsubara, T. Matsumoto, T. Matsushita, S. Matsui, M. Nagasono, N. Nariyama, H. Ohashi, T. Ohata, T. Ohshima, S. Ono, Y. Otake, C. Saji, T. Sakurai, T. Sato, K. Sawada, T. Seike, K. Shirasawa, T. Sugimoto, S. Suzuki, S. Takahashi, H. Takebe, K. Takeshita, K. Tamasaku, H. Tanaka, R. Tanaka, T. Tanaka, T. Togashi, K. Togawa, A. Tokuhisa, H. Tomizawa, K. Tono, S. Wu, M. Yabashi, M. Yamaga, A. Yamashita, K. Yanagida, C. Zhang, T. Shintake, H. Kitamura, and N. Kumagai, “ A compact X-ray free-electron laser emitting in the sub-angstrom region,” Nat. Photonics 6, 540544 (2012).
J. Küpper, S. Stern, L. Holmegaard, F. Filsinger, A. Rouzée, A. Rudenko, P. Johnsson, A. V. Martin, M. Adolph, A. Aquila, S. C. V. Bajt, A. Barty, C. Bostedt, J. Bozek, C. Caleman, R. Coffee, N. Coppola, T. Delmas, S. Epp, B. Erk, L. Foucar, T. Gorkhover, L. Gumprecht, A. Hartmann, R. Hartmann, G. Hauser, P. Holl, A. Hömke, N. Kimmel, F. Krasniqi, K.-U. Kühnel, J. Maurer, M. Messerschmidt, R. Moshammer, C. Reich, B. Rudek, R. Santra, I. Schlichting, C. Schmidt, S. Schorb, J. Schulz, H. Soltau, J. C. H. Spence, D. Starodub, L. Strüder, J. Thøgersen, M. J. J. Vrakking, G. Weidenspointner, T. A. White, C. Wunderer, G. Meijer, J. Ullrich, H. Stapelfeldt, D. Rolles, and H. N. Chapman, “ X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser,” Phys. Rev. Lett. 112, 083002 (2014).
C. J. Hensley, J. Yang, and M. Centurion, “ Imaging of isolated molecules with ultrafast electron pulses,” Phys. Rev. Lett. 109, 133202 (2012).
A. Gliserin, M. Walbran, F. Krausz, and P. Baum, “ Sub-phonon-period compression of electron pulses for atomic diffraction,” Nat. Commun. 6, 8723 (2015).
C. Gerbig, A. Senftleben, S. Morgenstern, C. Sarpe, and T. Baumert, “ Spatio-temporal resolution studies on a highly compact ultrafast electron diffractometer,” New J. Phys. 17, 043050 (2015).
S. Lahme, C. Kealhofer, F. Krausz, and P. Baum, “ Femtosecond single-electron diffraction,” Struct. Dyn. 1, 034303 (2014).
G. Sciaini and R. J. D. Miller, “ Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys. 74, 096101 (2011).
F. Krasniqi, B. Najjari, L. Strüder, D. Rolles, A. Voitkiv, and J. Ullrich, “ Imaging molecules from within: Ultrafast Angström-scale structure determination of molecules via photoelectron holography using free-electron lasers,” Phys. Rev. A 81, 033411 (2010).
R. Boll, D. Anielski, C. Bostedt, J. D. Bozek, L. Christensen, R. Coffee, S. De, P. Decleva, S. W. Epp, B. Erk, L. Foucar, F. Krasniqi, J. Kuepper, A. Rouzee, B. Rudek, A. Rudenko, S. Schorb, H. Stapelfeldt, M. Stener, S. Stern, S. Techert, S. Trippel, M. J. J. Vrakking, J. Ullrich, and D. Rolles, “ Femtosecond photoelectron diffraction on laser-aligned molecules: Towards time-resolved imaging of molecular structure,” Phys. Rev. A 88, 061402 (2013).
Y. Morimoto, R. Kanya, and K. Yamanouchi, “ Laser-assisted electron diffraction for femtosecond molecular imaging,” J. Chem. Phys. 140, 064201 (2014).
J. Xu, Z. Chen, A.-T. Le, and C. D. Lin, “ Self-imaging of molecules from diffraction spectra by laser-induced rescattering electrons,” Phys. Rev. A 82, 033403 (2010).
C. I. Blaga, J. Xu, A. D. Di, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “ Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483, 194197 (2012).
M. G. Pullen, B. Wolter, A.-T. Le, M. Baudisch, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, C. D. Lin, and J. Biegert, “ Imaging an aligned polyatomic molecule with laser-induced electron diffraction,” Nat. Commun. 6, 7262 (2015).
Z. Chen, A.-T. Le, T. Morishita, and C. D. Lin, “ Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra,” Phys. Rev. A 79, 033409 (2009).
C. D. Lin, A.-T. Le, Z. Chen, T. Morishita, and R. Lucchese, “ Strong-field rescattering physics-self-imaging of a molecule by its own electrons,” J. Phys. B: At. Mol. Opt. Phys. 43, 122001 (2010).
M. Okunishi, T. Morishita, G. Prümper, K. Shimada, C. D. Lin, S. Watanabe, and K. Ueda, “ Experimental retrieval of target structure information from laser-induced rescattered photoelectron momentum distributions,” Phys. Rev. Lett. 100, 143001 (2008).
D. Ray, B. Ulrich, I. Bocharova, C. Maharjan, P. Ranitovic, B. Gramkow, M. Magrakvelidze, S. De, I. V. Litvinyuk, A.-T. Le, T. Morishita, C. D. Lin, G. G. Paulus, and C. L. Cocke, “ Large-angle electron diffraction structure in laser-induced rescattering from rare gases,” Phys. Rev. Lett. 100, 143002 (2008).
D. Griffiths, Introduction to Quantum Mechanics ( Pearson Prentice Hall, 2005).
I. Hargittai, “ Gas-phase electron diffraction for molecular structure determination,” in Electron Crystallography ( Springer, 2006), pp. 197206.
T. Zuo, A. D. Bandrauk, and P. B. Corkum, “ Laser-induced electron diffraction: A new tool for probing ultrafast molecular dynamics,” Chem. Phys. Lett. 259, 313320 (1996).
M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavičić, H. C. Bandulet, H. Pépin, J. C. Kieffer, R. Dörner, D. M. Villeneuve, and P. B. Corkum, “ Laser-induced electron tunneling and diffraction,” Science 320, 14781482 (2008).
X. M. Tong, Z. X. Zhao, and C. D. Lin, “ Theory of molecular tunneling ionization,” Phys. Rev. A 66, 033402 (2002).
C. Yu, H. Wei, X. Wang, A.-T. Le, R. Lu, and C. D. Lin, “ Reconstruction of two-dimensional molecular structure with laser-induced electron diffraction from laser-aligned polyatomic molecules,” Sci. Rep. 5, 15753 (2015).
T. Kanai, S. Minemoto, and H. Sakai, “ Quantum interference during high-order harmonic generation from aligned molecules,” Nature 435, 470474 (2005).
L. Holmegaard, J. L. Hansen, L. Kalhøj, S. L. Kragh, H. Stapelfeldt, F. Filsinger, J. Küpper, G. Meijer, D. Dimitrovski, M. Abu-Samha, C. P. J. Martiny, and L. B. Madsen, “ Photoelectron angular distributions from strong-field ionization of oriented molecules,” Nat. Phys. 6, 428432 (2010).
A. Rouzee, F. Kelkensberg, W. K. Siu, G. Gademann, R. R. Lucchese, and M. J. J. Vrakking, “ Photoelectron kinetic and angular distributions for the ionization of aligned molecules using a hhg source,” J. Phys. B: At. Mol. Opt. Phys. 45, 074016 (2012).
L. Holmegaard, J. H. Nielsen, I. Nevo, H. Stapelfeldt, F. Filsinger, J. Küpper, and G. Meijer, “ Laser-induced alignment and orientation of quantum-state-selected large molecules,” Phys. Rev. Lett. 102, 023001 (2009).
C. Jin, G. Wang, H. Wei, A.-T. Le, and C. D. Lin, “ Waveforms for optimal sub-kev high-order harmonics with synthesized two- or three-colour laser fields,” Nat. Commun. 5, 4003 (2014).

Data & Media loading...


Article metrics loading...



We have measured the angular distributions of high energy photoelectrons of benzene molecules generated by intense infrared femtosecond laser pulses. These electrons arise from the elastic collisions between the benzene ions with the previously tunnel-ionized electrons that have been driven back by the laser field. Theory shows that laser-free elastic differential cross sections (DCSs) can be extracted from these photoelectrons, and the DCS can be used to retrieve the bond lengths of gas-phase molecules similar to the conventional electron diffraction method. From our experimental results, we have obtained the C-C and C-H bond lengths of benzene with a spatial resolution of about 10 pm. Our results demonstrate that laser induced electron diffraction (LIED) experiments can be carried out with the present-day ultrafast intense lasers already. Looking ahead, with aligned or oriented molecules, more complete spatial information of the molecule can be obtained from LIED, and applying LIED to probe photo-excited molecules, a “molecular movie” of the dynamic system may be created with sub-Ångström spatial and few-ten femtosecond temporal resolutions.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd