Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/3/10.1063/1.4952602
1.
A. Zewail and J. Thomas, 4D Electron Microscopy: Imaging in Space and Time ( Imperial College Press, 2010).
2.
R. J. D. Miller, “ Femtosecond crystallography with ultrabright electrons and x-rays: Capturing chemistry in action,” Science 343, 11081116 (2014).
http://dx.doi.org/10.1126/science.1248488
3.
H. N. Chapman, “ X-ray imaging beyond the limits,” Nat. Mater. 8, 299301 (2009).
http://dx.doi.org/10.1038/nmat2402
4.
W. Domcke and D. R. Yarkony, “ Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics,” Annu. Rev. Phys. Chem. 63, 325352 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032210-103522
5.
D. Zhong and A. Zewail, “ Femtosecond real-time probing of reactions. 23. Studies of temporal, velocity, angular, and state dynamics from transition states to final products by femtosecond-resolved mass spectrometry,” J. Phys. Chem. A 102, 40314058 (1998).
http://dx.doi.org/10.1021/jp9805196
6.
H. Xu, T. Okino, and K. Yamanouchi, “ Tracing ultrafast hydrogen migration in allene in intense laser fields by triple-ion coincidence momentum imaging,” J. Chem. Phys. 131, 151102 (2009).
http://dx.doi.org/10.1063/1.3251032
7.
B. R. Heazlewood, M. J. T. Jordan, S. H. Kable, T. M. Selby, D. L. Osborn, B. C. Shepler, B. J. Braams, and J. M. Bowman, “ Roaming is the dominant mechanism for molecular products in acetaldehyde photodissociation,” Proc. Natl. Acad. Sci. U.S.A. 105, 1271912724 (2008).
http://dx.doi.org/10.1073/pnas.0802769105
8.
M. P. Minitti, J. M. Budarz, A. Kirrander, J. S. Robinson, D. Ratner, T. J. Lane, D. Zhu, J. M. Glownia, M. Kozina, H. T. Lemke, M. Sikorski, Y. Feng, S. Nelson, K. Saita, B. Stankus, T. Northey, J. B. Hastings, and P. M. Weber, “ Imaging molecular motion: Femtosecond x-ray scattering of an electrocyclic chemical reaction,” Phys. Rev. Lett. 114, 255501 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.255501
9.
E. Wollan, “ X-ray scattering and atomic structure,” Rev. Mod. Phys. 4, 205258 (1932).
http://dx.doi.org/10.1103/RevModPhys.4.205
10.
L. Brockway, “ Electron diffraction by gas molecules,” Rev. Mod. Phys. 8, 231266 (1936).
http://dx.doi.org/10.1103/RevModPhys.8.231
11.
P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F. J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H. D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, and J. Galayda, “ First lasing and operation of an angstrom-wavelength free-electron laser,” Nat. Photonics 4, 641647 (2010).
http://dx.doi.org/10.1038/nphoton.2010.176
12.
T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa, S. Goto, H. Hanaki, T. Hara, T. Hasegawa, T. Hatsui, A. Higashiya, T. Hirono, N. Hosoda, M. Ishii, T. Inagaki, Y. Inubushi, T. Itoga, Y. Joti, M. Kago, T. Kameshima, H. Kimura, Y. Kirihara, A. Kiyomichi, T. Kobayashi, C. Kondo, T. Kudo, H. Maesaka, X. M. Marechal, T. Masuda, S. Matsubara, T. Matsumoto, T. Matsushita, S. Matsui, M. Nagasono, N. Nariyama, H. Ohashi, T. Ohata, T. Ohshima, S. Ono, Y. Otake, C. Saji, T. Sakurai, T. Sato, K. Sawada, T. Seike, K. Shirasawa, T. Sugimoto, S. Suzuki, S. Takahashi, H. Takebe, K. Takeshita, K. Tamasaku, H. Tanaka, R. Tanaka, T. Tanaka, T. Togashi, K. Togawa, A. Tokuhisa, H. Tomizawa, K. Tono, S. Wu, M. Yabashi, M. Yamaga, A. Yamashita, K. Yanagida, C. Zhang, T. Shintake, H. Kitamura, and N. Kumagai, “ A compact X-ray free-electron laser emitting in the sub-angstrom region,” Nat. Photonics 6, 540544 (2012).
http://dx.doi.org/10.1038/nphoton.2012.141
13.
J. Küpper, S. Stern, L. Holmegaard, F. Filsinger, A. Rouzée, A. Rudenko, P. Johnsson, A. V. Martin, M. Adolph, A. Aquila, S. C. V. Bajt, A. Barty, C. Bostedt, J. Bozek, C. Caleman, R. Coffee, N. Coppola, T. Delmas, S. Epp, B. Erk, L. Foucar, T. Gorkhover, L. Gumprecht, A. Hartmann, R. Hartmann, G. Hauser, P. Holl, A. Hömke, N. Kimmel, F. Krasniqi, K.-U. Kühnel, J. Maurer, M. Messerschmidt, R. Moshammer, C. Reich, B. Rudek, R. Santra, I. Schlichting, C. Schmidt, S. Schorb, J. Schulz, H. Soltau, J. C. H. Spence, D. Starodub, L. Strüder, J. Thøgersen, M. J. J. Vrakking, G. Weidenspointner, T. A. White, C. Wunderer, G. Meijer, J. Ullrich, H. Stapelfeldt, D. Rolles, and H. N. Chapman, “ X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser,” Phys. Rev. Lett. 112, 083002 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.083002
14.
C. J. Hensley, J. Yang, and M. Centurion, “ Imaging of isolated molecules with ultrafast electron pulses,” Phys. Rev. Lett. 109, 133202 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.133202
15.
A. Gliserin, M. Walbran, F. Krausz, and P. Baum, “ Sub-phonon-period compression of electron pulses for atomic diffraction,” Nat. Commun. 6, 8723 (2015).
http://dx.doi.org/10.1038/ncomms9723
16.
C. Gerbig, A. Senftleben, S. Morgenstern, C. Sarpe, and T. Baumert, “ Spatio-temporal resolution studies on a highly compact ultrafast electron diffractometer,” New J. Phys. 17, 043050 (2015).
http://dx.doi.org/10.1088/1367-2630/17/4/043050
17.
S. Lahme, C. Kealhofer, F. Krausz, and P. Baum, “ Femtosecond single-electron diffraction,” Struct. Dyn. 1, 034303 (2014).
http://dx.doi.org/10.1063/1.4884937
18.
G. Sciaini and R. J. D. Miller, “ Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys. 74, 096101 (2011).
http://dx.doi.org/10.1088/0034-4885/74/9/096101
19.
F. Krasniqi, B. Najjari, L. Strüder, D. Rolles, A. Voitkiv, and J. Ullrich, “ Imaging molecules from within: Ultrafast Angström-scale structure determination of molecules via photoelectron holography using free-electron lasers,” Phys. Rev. A 81, 033411 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.033411
20.
R. Boll, D. Anielski, C. Bostedt, J. D. Bozek, L. Christensen, R. Coffee, S. De, P. Decleva, S. W. Epp, B. Erk, L. Foucar, F. Krasniqi, J. Kuepper, A. Rouzee, B. Rudek, A. Rudenko, S. Schorb, H. Stapelfeldt, M. Stener, S. Stern, S. Techert, S. Trippel, M. J. J. Vrakking, J. Ullrich, and D. Rolles, “ Femtosecond photoelectron diffraction on laser-aligned molecules: Towards time-resolved imaging of molecular structure,” Phys. Rev. A 88, 061402 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.061402
21.
Y. Morimoto, R. Kanya, and K. Yamanouchi, “ Laser-assisted electron diffraction for femtosecond molecular imaging,” J. Chem. Phys. 140, 064201 (2014).
http://dx.doi.org/10.1063/1.4863985
22.
J. Xu, Z. Chen, A.-T. Le, and C. D. Lin, “ Self-imaging of molecules from diffraction spectra by laser-induced rescattering electrons,” Phys. Rev. A 82, 033403 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.033403
23.
C. I. Blaga, J. Xu, A. D. Di, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “ Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483, 194197 (2012).
http://dx.doi.org/10.1038/nature10820
24.
M. G. Pullen, B. Wolter, A.-T. Le, M. Baudisch, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, C. D. Lin, and J. Biegert, “ Imaging an aligned polyatomic molecule with laser-induced electron diffraction,” Nat. Commun. 6, 7262 (2015).
http://dx.doi.org/10.1038/ncomms8262
25.
Z. Chen, A.-T. Le, T. Morishita, and C. D. Lin, “ Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra,” Phys. Rev. A 79, 033409 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.033409
26.
C. D. Lin, A.-T. Le, Z. Chen, T. Morishita, and R. Lucchese, “ Strong-field rescattering physics-self-imaging of a molecule by its own electrons,” J. Phys. B: At. Mol. Opt. Phys. 43, 122001 (2010).
http://dx.doi.org/10.1088/0953-4075/43/12/122001
27.
M. Okunishi, T. Morishita, G. Prümper, K. Shimada, C. D. Lin, S. Watanabe, and K. Ueda, “ Experimental retrieval of target structure information from laser-induced rescattered photoelectron momentum distributions,” Phys. Rev. Lett. 100, 143001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.143001
28.
D. Ray, B. Ulrich, I. Bocharova, C. Maharjan, P. Ranitovic, B. Gramkow, M. Magrakvelidze, S. De, I. V. Litvinyuk, A.-T. Le, T. Morishita, C. D. Lin, G. G. Paulus, and C. L. Cocke, “ Large-angle electron diffraction structure in laser-induced rescattering from rare gases,” Phys. Rev. Lett. 100, 143002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.143002
29.
D. Griffiths, Introduction to Quantum Mechanics ( Pearson Prentice Hall, 2005).
30.
I. Hargittai, “ Gas-phase electron diffraction for molecular structure determination,” in Electron Crystallography ( Springer, 2006), pp. 197206.
31.
T. Zuo, A. D. Bandrauk, and P. B. Corkum, “ Laser-induced electron diffraction: A new tool for probing ultrafast molecular dynamics,” Chem. Phys. Lett. 259, 313320 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00786-5
32.
M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavičić, H. C. Bandulet, H. Pépin, J. C. Kieffer, R. Dörner, D. M. Villeneuve, and P. B. Corkum, “ Laser-induced electron tunneling and diffraction,” Science 320, 14781482 (2008).
http://dx.doi.org/10.1126/science.1157980
33.
X. M. Tong, Z. X. Zhao, and C. D. Lin, “ Theory of molecular tunneling ionization,” Phys. Rev. A 66, 033402 (2002).
http://dx.doi.org/10.1103/PhysRevA.66.033402
34.
C. Yu, H. Wei, X. Wang, A.-T. Le, R. Lu, and C. D. Lin, “ Reconstruction of two-dimensional molecular structure with laser-induced electron diffraction from laser-aligned polyatomic molecules,” Sci. Rep. 5, 15753 (2015).
http://dx.doi.org/10.1038/srep15753
35.
T. Kanai, S. Minemoto, and H. Sakai, “ Quantum interference during high-order harmonic generation from aligned molecules,” Nature 435, 470474 (2005).
http://dx.doi.org/10.1038/nature03577
36.
L. Holmegaard, J. L. Hansen, L. Kalhøj, S. L. Kragh, H. Stapelfeldt, F. Filsinger, J. Küpper, G. Meijer, D. Dimitrovski, M. Abu-Samha, C. P. J. Martiny, and L. B. Madsen, “ Photoelectron angular distributions from strong-field ionization of oriented molecules,” Nat. Phys. 6, 428432 (2010).
http://dx.doi.org/10.1038/nphys1666
37.
A. Rouzee, F. Kelkensberg, W. K. Siu, G. Gademann, R. R. Lucchese, and M. J. J. Vrakking, “ Photoelectron kinetic and angular distributions for the ionization of aligned molecules using a hhg source,” J. Phys. B: At. Mol. Opt. Phys. 45, 074016 (2012).
http://dx.doi.org/10.1088/0953-4075/45/7/074016
38.
L. Holmegaard, J. H. Nielsen, I. Nevo, H. Stapelfeldt, F. Filsinger, J. Küpper, and G. Meijer, “ Laser-induced alignment and orientation of quantum-state-selected large molecules,” Phys. Rev. Lett. 102, 023001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.023001
39.
C. Jin, G. Wang, H. Wei, A.-T. Le, and C. D. Lin, “ Waveforms for optimal sub-kev high-order harmonics with synthesized two- or three-colour laser fields,” Nat. Commun. 5, 4003 (2014).
http://dx.doi.org/10.1038/ncomms5003
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/3/10.1063/1.4952602
Loading
/content/aca/journal/sdy/3/3/10.1063/1.4952602
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/3/10.1063/1.4952602
2016-05-24
2016-09-25

Abstract

We have measured the angular distributions of high energy photoelectrons of benzene molecules generated by intense infrared femtosecond laser pulses. These electrons arise from the elastic collisions between the benzene ions with the previously tunnel-ionized electrons that have been driven back by the laser field. Theory shows that laser-free elastic differential cross sections (DCSs) can be extracted from these photoelectrons, and the DCS can be used to retrieve the bond lengths of gas-phase molecules similar to the conventional electron diffraction method. From our experimental results, we have obtained the C-C and C-H bond lengths of benzene with a spatial resolution of about 10 pm. Our results demonstrate that laser induced electron diffraction (LIED) experiments can be carried out with the present-day ultrafast intense lasers already. Looking ahead, with aligned or oriented molecules, more complete spatial information of the molecule can be obtained from LIED, and applying LIED to probe photo-excited molecules, a “molecular movie” of the dynamic system may be created with sub-Ångström spatial and few-ten femtosecond temporal resolutions.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/3/1.4952602.html;jsessionid=lsx2DH-RKJd97rgKwJHptj3n.x-aip-live-03?itemId=/content/aca/journal/sdy/3/3/10.1063/1.4952602&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/3/10.1063/1.4952602&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/3/10.1063/1.4952602'
Right1,Right2,Right3,