Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/3/10.1063/1.4953104
1.
C. J. Milne, T. J. Penfold, and M. Chergui, Coord. Chem. Rev. 277–278, 44 (2014).
http://dx.doi.org/10.1016/j.ccr.2014.02.013
2.
M. Chergui, Faraday Discuss. 171, 11 (2014).
http://dx.doi.org/10.1039/C4FD00157E
3.
M. Chergui, in In-situ Materials Characterization, edited by A. Ziegler, H. Graafsma, X. F. Zhang, and J. W. M. Frenken ( Springer, Berlin, Heidelberg, 2014), Vol. 193, p. 1.
4.
J. A. van Bokhoven and C. Lamberti, X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications ( Wiley, 2016).
5.
W. K. Zhang and K. J. Gaffney, Acc. Chem. Res. 48, 1140 (2015).
http://dx.doi.org/10.1021/ar500407p
6.
K. Hong, H. Cho, R. W. Schoenlein, T. K. Kim, and N. Huse, Acc. Chem. Res. 48, 2957 (2015).
http://dx.doi.org/10.1021/acs.accounts.5b00154
7.
O. Gessner and M. Gühr, Acc. Chem. Res. 49, 138 (2016).
http://dx.doi.org/10.1021/acs.accounts.5b00361
8.
C. Bostedt et al., Rev. Mod. Phys. 88, 015007 (2016).
http://dx.doi.org/10.1103/RevModPhys.88.015007
9.
F. A. Lima et al., Rev. Sci. Instrum. 82, 063111 (2011).
http://dx.doi.org/10.1063/1.3600616
10.
C. Bressler and M. Chergui, Chem. Rev. 104, 1781 (2004).
http://dx.doi.org/10.1021/cr0206667
11.
C. Bressler and M. Chergui, Annu. Rev. Phys. Chem. 61, 263 (2010).
http://dx.doi.org/10.1146/annurev.physchem.012809.103353
12.
L. X. Chen, Angew. Chem. Int. Ed. 43, 2886 (2004).
http://dx.doi.org/10.1002/anie.200300596
13.
L. X. Chen, Annu. Rev. Phys. Chem. 56, 221 (2005).
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141310
14.
M. Chergui, Acta Crystallogr., A 66, 229 (2010).
http://dx.doi.org/10.1107/S010876730904968X
15.
M. Chergui, in Comprehensive Biophysics, edited by E. Egelman ( Academic Press, 2012), Vol. 1.
16.
M. Chergui and A. H. Zewail, Chemphyschem 10, 28 (2009).
http://dx.doi.org/10.1002/cphc.200800667
17.
G. Vanko, P. Glatzel, V. T. Pham, R. Abela, D. Grolimund, C. N. Borca, S. L. Johnson, C. J. Milne, and C. Bressler, Angew. Chem. Int. Ed. 49, 5910 (2010).
http://dx.doi.org/10.1002/anie.201000844
18.
G. Vanko et al., J. Electron. Spectrosc. Relat. Phenom. 188, 166 (2013).
http://dx.doi.org/10.1016/j.elspec.2012.09.012
19.
A. M. March et al., J. Phys. Chem. C 119, 14571 (2015).
http://dx.doi.org/10.1021/jp511838q
20.
T. Giessel, D. Brocker, P. Schmidt, and W. Widdra, Rev. Sci. Instrum. 74, 4620 (2003).
http://dx.doi.org/10.1063/1.1614880
21.
L. Stebel, M. Malvestuto, V. Capogrosso, P. Sigalotti, B. Ressel, F. Bondino, E. Magnano, G. Cautero, and F. Parmigiani, Rev. Sci. Instrum. 82, 123109 (2011).
http://dx.doi.org/10.1063/1.3669787
22.
S. Neppl et al., Faraday Discuss. 171, 219 (2014).
http://dx.doi.org/10.1039/C4FD00036F
23.
A. Shavorskiy et al., Rev. Sci. Instrum. 85, 093102 (2014).
http://dx.doi.org/10.1063/1.4894208
24.
S. Neppl and O. Gessner, J. Electron. Spectrosc. Relat. Phenom. 200, 64 (2015).
http://dx.doi.org/10.1016/j.elspec.2015.03.002
25.
R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, W. P. Leemans, C. V. Shank, A. Zholents, and M. Zolotorev, Appl. Phys. B-Lasers Opt. 71, 1 (2000).
http://dx.doi.org/10.1007/PL00021152
26.
R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, Science 287, 2237 (2000).
http://dx.doi.org/10.1126/science.287.5461.2237
27.
P. Beaud et al., Phys. Rev. Lett. 99, 174801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.174801
28.
S. Khan, K. Holldack, T. Kachel, R. Mitzner, and T. Quast, Phys. Rev. Lett. 97, 074801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.074801
29.
H. T. Lemke et al., J. Phys. Chem. A 117, 735 (2013).
http://dx.doi.org/10.1021/jp312559h
30.
W. K. Zhang et al., Nature 509, 345 (2014).
http://dx.doi.org/10.1038/nature13252
31.
S. E. Canton et al., Nat. Commun. 6, 6359 (2015).
http://dx.doi.org/10.1038/ncomms7359
32.
P. Wernet et al., Nature 520, 78 (2015).
http://dx.doi.org/10.1038/nature14296
33.
K. Kunnus et al., Struct. Dyn. 3, 043204 (2016).
http://dx.doi.org/10.1063/1.4941602
34.
W. Ackermann et al., Nat. Photonics 1, 336 (2007).
http://dx.doi.org/10.1038/nphoton.2007.76
35.
E. Allaria, C. Callegari, D. Cocco, W. M. Fawley, M. Kiskinova, C. Masciovecchio, and F. Parmigiani, New J. Phys. 12, 075002 (2010).
http://dx.doi.org/10.1088/1367-2630/12/7/075002
36.
T. Hara, Nat. Photonics 7, 852 (2013).
http://dx.doi.org/10.1038/nphoton.2013.279
37.
G. De Ninno, B. Mahieu, E. Allaria, L. Giannessi, and S. Spampinati, Phys. Rev. Lett. 110, 064801 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.064801
38.
M. Zangrando et al., Proc. SPIE 8504, 850404 (2012).
http://dx.doi.org/10.1117/12.929749
39.
E. Allaria et al., Nat. Photonics 6, 699 (2012).
http://dx.doi.org/10.1038/nphoton.2012.233
40.
M. Zangrando et al., “ Advances in X-ray free-electron lasers: Radiation schemes, X-ray optics, and instrumentation,” Proc. SPIE 8078, 80780I (2011).
http://dx.doi.org/10.1117/12.886459
41.
M. Kato et al., Appl. Phys. Lett. 101, 023503 (2012).
http://dx.doi.org/10.1063/1.4733354
42.
H. Ohashi et al., Nucl. Instrum. Methods Phys. Res., Sect. A 710, 139 (2013).
http://dx.doi.org/10.1016/j.nima.2012.10.094
43.
K. Tono et al., New J. Phys. 15, 083035 (2013).
http://dx.doi.org/10.1088/1367-2630/15/8/083035
44.
Y. Obara et al., Opt. Express 22, 1105 (2014).
http://dx.doi.org/10.1364/OE.22.001105
45.
P. N. Juranic et al., Opt. Express 22, 30004 (2014).
http://dx.doi.org/10.1364/OE.22.030004
46.
M. Yabashi, H. Tanaka, and T. Ishikawa, J. Synchrotron Radiat. 22, 477 (2015).
http://dx.doi.org/10.1107/S1600577515004658
47.
E. Allaria et al., Nat. Commun. 4, 2476 (2013).
http://dx.doi.org/10.1038/ncomms3476
48.
F. Bencivenga et al., New J. Phys. 15, 123023 (2013).
http://dx.doi.org/10.1088/1367-2630/15/12/123023
49.
F. Bencivenga et al., Faraday Discuss. 171, 487 (2014).
http://dx.doi.org/10.1039/C4FD00100A
50.
E. A. Stern and D. Brewe, AIP Conf. Proc. 882, 24 (2007).
http://dx.doi.org/10.1063/1.2644424
51.
A. M. March et al., Rev. Sci. Instrum. 82, 073110 (2011).
http://dx.doi.org/10.1063/1.3615245
52.
M. Saes et al., Rev. Sci. Instrum. 75, 24 (2004).
http://dx.doi.org/10.1063/1.1633003
53.
M. Saes, W. Gawelda, M. Kaiser, A. Tarnovsky, Ch. Bressler, M. Chergui, S. L. Johnson, D. Grolimund, and R. Abela, Synchrotron Radiat. News 16, 12 (2003).
http://dx.doi.org/10.1080/08940880308603029
54.
A. El Nahhas et al., J. Phys. Chem. A 117, 361 (2013).
http://dx.doi.org/10.1021/jp3106502
55.
T. J. Penfold et al., J. Phys. Chem. A 117, 4591 (2013).
http://dx.doi.org/10.1021/jp403751m
56.
M. Reinhard et al., Struct. Dyn. 1, 024901 (2014).
http://dx.doi.org/10.1063/1.4871751
57.
M. H. Rittmann-Frank, C. J. Milne, J. Rittmann, M. Reinhard, T. J. Penfold, and M. Chergui, Angew. Chem. Int. Ed. 53, 5858 (2014).
http://dx.doi.org/10.1002/anie.201310522
58.
C. J. Milne et al., in 19th International Conference on Ultrafast Phenomena (Optical Society of America, Okinawa, 2014), p. 09.Wed.D.1.
59.
Y. Uemura, H. Uehara, Y. Niwa, S. Nozawa, T. Sato, S. Adachi, B. Ohtani, S. Takakusagi, and K. Asakura, Chem. Lett. 43, 977 (2014).
http://dx.doi.org/10.1246/cl.140144
60.
L. Amidani, A. Naldoni, M. Malvestuto, M. Marelli, P. Glatzel, V. Dal Santo, and F. Boscherini, Angew. Chem. Int. Ed. 54, 5413 (2015).
http://dx.doi.org/10.1002/anie.201412030
61.
M. Silatani et al., Proc. Natl. Acad. Sci. U.S.A. 112, 12922 (2015).
http://dx.doi.org/10.1073/pnas.1424446112
62.
K. Haldrup et al., J. Phys. Chem. A 116, 9878 (2012).
http://dx.doi.org/10.1021/jp306917x
63.
C. Bressler et al., Faraday Discuss. 171, 169 (2014).
http://dx.doi.org/10.1039/C4FD00097H
64.
G. Vanko et al., J. Phys. Chem. C 119, 5888 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b00557
65.
K. Holldack, S. Khan, R. Mitzner, and T. Quast, Phys. Rev. Lett. 96, 054801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.054801
66.
C. Bressler et al., Science 323, 489 (2009).
http://dx.doi.org/10.1126/science.1165733
67.
V. T. Pham et al., J. Am. Chem. Soc. 133, 12740 (2011).
http://dx.doi.org/10.1021/ja203882y
68.
F. G. Santomauro et al., Sci. Rep-Uk 5, 14834 (2015).
http://dx.doi.org/10.1038/srep14834
69.
A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, Phys. Rev. Lett. 95, 067405 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.067405
70.
N. Huse, H. Cho, K. Hong, L. Jamula, F. M. F. de Groot, T. K. Kim, J. K. McCusker, and R. W. Schoenlein, J. Phys. Chem. Lett. 2, 880 (2011).
http://dx.doi.org/10.1021/jz200168m
71.
B. E. Van Kuiken, H. Cho, K. Hong, M. Khalil, R. W. Schoenlein, T. K. Kim, and N. Huse, J. Phys. Chem. Lett. 7, 465 (2016).
http://dx.doi.org/10.1021/acs.jpclett.5b02509
72.
P. Emma et al., Nat. Photonics 4, 641 (2010).
http://dx.doi.org/10.1038/nphoton.2010.176
73.
D. Pile and P. Emma, Nat. Photonics 4, 802 (2010).
http://dx.doi.org/10.1038/nphoton.2010.276
74.
T. Ishikawa et al., Nat. Photonics 6, 540 (2012).
http://dx.doi.org/10.1038/nphoton.2012.141
75.
J. Amann et al., Nat. Photonics 6, 693 (2012).
http://dx.doi.org/10.1038/nphoton.2012.180
76.
M. R. Bionta et al., Opt. Express 19, 21855 (2011).
http://dx.doi.org/10.1364/OE.19.021855
77.
O. Krupin et al., Opt. Express 20, 11396 (2012).
http://dx.doi.org/10.1364/OE.20.011396
78.
M. Harmand et al., Nat. Photonics 7, 215 (2013).
http://dx.doi.org/10.1038/nphoton.2013.11
79.
T. Katayama et al., Struct. Dyn. 3, 034301 (2016).
http://dx.doi.org/10.1063/1.4939655
80.
M. Levantino, H. T. Lemke, G. Schirò, M. Glownia, A. Cupane, and M. Cammarata, Struct. Dyn. 2, 041713 (2015).
http://dx.doi.org/10.1063/1.4921907
81.
H. T. Lemke et al., e-print arXiv:1601.01244.
82.
C. Consani, M. Premont-Schwarz, A. ElNahhas, C. Bressler, F. van Mourik, A. Cannizzo, and M. Chergui, Angew. Chem. Int. Ed. 48, 7184 (2009).
http://dx.doi.org/10.1002/anie.200902728
83.
G. Aubock and M. Chergui, Nat. Chem. 7, 629 (2015).
http://dx.doi.org/10.1038/nchem.2305
84.
A. Marino, M. Cammarata, S. F. Matar, J.-F. Létard, G. Chastanet, M. Chollet, J. M. Glownia, H. T. Lemke, and E. Collet, Struct. Dyn. 3, 023605 (2016).
http://dx.doi.org/10.1063/1.4936290
85.
Y. Ogi et al., Struct. Dyn. 2, 034901 (2015).
http://dx.doi.org/10.1063/1.4918803
86.
Y. Uemura et al., Angew. Chem. Int. Ed. 55, 1364 (2016).
http://dx.doi.org/10.1002/anie.201509252
87.
T. Katayama et al., Appl. Phys. Lett. 103, 131105 (2013).
http://dx.doi.org/10.1063/1.4821108
88.
J. Gaudin et al., Sci. Rep. 4, 4724 (2014).
http://dx.doi.org/10.1038/srep04724
89.
M. Dell'Angela et al., Science 339, 1302 (2013).
http://dx.doi.org/10.1126/science.1231711
90.
M. Beye et al., Phys. Rev. Lett. 110, 186101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.186101
91.
H. Ostrom et al., Science 347, 978 (2015).
http://dx.doi.org/10.1126/science.1261747
92.
G. Vanko, T. Neisius, G. Molnar, F. Renz, S. Karpati, A. Shukla, and F. M. F. de Groot, J. Phys. Chem. B 110, 11647 (2006).
http://dx.doi.org/10.1021/jp0615961
93.
P. Glatzel and U. Bergmann, Coord. Chem. Rev. 249, 65 (2005).
http://dx.doi.org/10.1016/j.ccr.2004.04.011
94.
U. Bergmann and P. Glatzel, Photosynth. Res. 102, 255 (2009).
http://dx.doi.org/10.1007/s11120-009-9483-6
95.
N. Lee, T. Petrenko, U. Bergmann, F. Neese, and S. DeBeer, J. Am. Chem. Soc. 132, 9715 (2010).
http://dx.doi.org/10.1021/ja101281e
96.
V. Krewald et al., Inorg. Chem. 52, 12904 (2013).
http://dx.doi.org/10.1021/ic4008203
97.
B. Lassalle-Kaiser et al., Inorg. Chem. 52, 12915 (2013).
http://dx.doi.org/10.1021/ic400821g
98.
J. Kern et al., Science 340, 491 (2013).
http://dx.doi.org/10.1126/science.1234273
99.
L. J. P. Ament, G. Ghiringhelli, M. Moretti Sala, L. Braicovich, and J. van den Brink, Phys. Rev. Lett. 103, 117003 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.117003
100.
M. W. Haverkort, Phys. Rev. Lett. 105, 167404 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.167404
101.
D. L. Zhu et al., Appl. Phys. Lett. 101, 034103 (2012).
http://dx.doi.org/10.1063/1.4736725
102.
J. Tulkki and T. Aberg, J. Phys. B-At. Mol. Opt. 15, L435 (1982).
http://dx.doi.org/10.1088/0022-3700/15/13/004
103.
G. Geloni, V. Kocharyan, and E. Saldin, J. Mod. Opt. 58, 1391 (2011).
http://dx.doi.org/10.1080/09500340.2011.586473
104.
J. Szlachetko et al., Struct. Dyn. 1, 021101 (2014).
http://dx.doi.org/10.1063/1.4868260
105.
L. Dhar, J. A. Rogers, and K. A. Nelson, Chem. Rev. 94, 157 (1994).
http://dx.doi.org/10.1021/cr00025a006
106.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy ( Oxford University Press, New York, 1995).
107.
S. Tanaka, V. Chernyak, and S. Mukamel, Phys. Rev. A 63, 063405 (2001).
http://dx.doi.org/10.1103/PhysRevA.63.063405
108.
S. Tanaka and S. Mukamel, Phys. Rev. A 64, 032503 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.032503
109.
S. Tanaka and S. Mukamel, Phys. Rev. Lett. 89, 043001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.043001
110.
S. Tanaka and S. Mukamel, J. Chem. Phys. 116, 1877 (2002).
http://dx.doi.org/10.1063/1.1429950
111.
S. Tanaka and S. Mukamel, Phys. Rev. A 67, 033818 (2003).
http://dx.doi.org/10.1103/PhysRevA.67.033818
112.
S. Tanaka, S. Volkov, and S. Mukamel, J. Chem. Phys. 118, 3065 (2003).
http://dx.doi.org/10.1063/1.1533014
113.
F. Bencivenga et al., Nature 520, 205 (2015).
http://dx.doi.org/10.1038/nature14341
114.
D. Healion, Y. Zhang, J. D. Biggs, W. Hua, and S. Mukamel, Struct. Dyn. 1, 014101 (2014).
http://dx.doi.org/10.1063/1.4833560
115.
E. Principi et al., Struct. Dyn. 3, 023604 (2016).
http://dx.doi.org/10.1063/1.4935687
116.
W. Hua, S. Oesterling, J. D. Biggs, Y. Zhang, H. Ando, R. de Vivie-Riedle, B. P. Fingerhut, and S. Mukamel, Struct. Dyn. 3, 023601 (2016).
http://dx.doi.org/10.1063/1.4933007
117.
J. Ojeda, C. A. Arrell, J. Grilj, F. Frassetto, L. Mewes, H. Zhang, F. van Mourik, L. Poletto, and M. Chergui, Struct. Dyn. 3, 023602 (2016).
http://dx.doi.org/10.1063/1.4933008
118.
F. Carbone, P. Musumeci, O. J. Luiten, and C. Hebert, Chem. Phys. 392, 1 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.10.010
119.
M. Ekimova, W. Quevedo, M. Faubel, P. Wernet, and E. T. J. Nibbering, Struct. Dyn. 2, 054301 (2015).
http://dx.doi.org/10.1063/1.4928715
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/3/10.1063/1.4953104
Loading
/content/aca/journal/sdy/3/3/10.1063/1.4953104
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/3/10.1063/1.4953104
2016-05-31
2016-12-09

Abstract

The past 3–5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/3/1.4953104.html;jsessionid=Ot_oRRYR7G7RcYOiYErnKx1X.x-aip-live-02?itemId=/content/aca/journal/sdy/3/3/10.1063/1.4953104&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/3/10.1063/1.4953104&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/3/10.1063/1.4953104'
Right1,Right2,Right3,