Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
F. J. Morin, “ Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 3436 (1959).
C. N. Berglund and H. J. Guggenheim, “ Electronic properties of VO2 near semiconductor-metal transition,” Phys. Rev. 185, 10221033 (1969).
J. H. Park, J. M. Coy, T. S. Kasirga, C. M. Huang, Z. Y. Fei, S. Hunter, and D. H. Cobden, “ Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500, 431434 (2013).
W. R. Roach and I. Balberg, “ Optical induction and detection of fast phase transition in VO2,” Solid State Commun. 9, 551555 (1971).
P. Baum, D.-S. Yang, and A. H. Zewail, “ 4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318, 788792 (2007).
V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “ A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346, 445448 (2014).
C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, and A. Leitenstorfer, “ Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2,” Phys. Rev. Lett. 99, 116401 (2007).
D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “ Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99, 226401 (2007).
A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “ Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “ Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85, 155120 (2012).
S. Wall, D. Wegkamp, L. Foglia, K. Appavoo, J. Nag, R. F. Haglund, J. Stähler, and M. Wolf, “ Ultrafast changes in lattice symmetry probed by coherent phonons,” Nat. Commun. 3, 721 (2012).
B. T. O'Callahan, A. C. Jones, J. H. Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “ Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2,” Nat. Commun. 6, 6849 (2015).
D. Wegkamp and J. Stähler, “ Ultrafast dynamics during the photoinduced phase transition in VO2,” Prog. Surf. Sci. 90, 464502 (2015).
G. Andersson, “ Studies on vanadium oxides. II. The crystal structure of vanadium dioxide,” Acta Chem. Scand. 10, 623628 (1956).
S. Westman, “ Note on a phase transition in VO2,” Acta Chem. Scand. 15, 217 (1961).
D. Kucharczyk and T. Niklewski, “ Accurate x-ray determination of the lattice parameters and the thermal expansion coefficients of VO2 near the transition temperature,” J. Appl. Cryst. 12, 370373 (1979).
A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “ Evidence for a structurally driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70, 161102(R) (2004).
D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “ Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113, 216401 (2014).
S. Wall, L. Foglia, D. Wegkamp, K. Appavoo, J. Nag, R. F. Haglund, J. Stähler, and M. Wolf, “ Tracking the evolution of electronic and structural properties of VO2 during the ultrafast photoinduced insulator-metal transition,” Phys. Rev. B 87, 115126 (2013).
Z. S. Tao, T. R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C.-Y. Ruan, K. Wang, and J. Q. Wu, “ Decoupling of structural and electronic phase transitions in VO2,” Phys. Rev. Lett. 109, 166406 (2012).
B. Mayer, C. Schmidt, A. Grupp, J. Bühler, J. Oelmann, R. E. Marvel, R. F. Haglund, T. Oka, D. Brida, A. Leitenstorfer, and A. Pashkin, “ Tunneling breakdown of a strongly correlated insulating state in VO2 induced by intense multiterahertz excitation,” Phys. Rev. B 91, 235113 (2015).
D.-S. Yang, N. Gedik, and A. H. Zewail, “ Ultrafast electron crystallography. 1. Nonequilibrium dynamics of nanometer-scale structures,” J. Phys. Chem. C 111, 48894919 (2007).
P. Baum and A. H. Zewail, “ Breaking resolution limits in ultrafast electron diffraction and microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103, 1610516110 (2006).
D. Kreier and P. Baum, “ Avoiding temporal distortions in tilted pulses,” Opt. Lett. 37, 23732375 (2012).
A. H. Zewail, “ 4D ultrafast electron diffraction, crystallography, and microscopy,” Annu. Rev. Phys. Chem. 57, 65103 (2006).
M. Aidelsburger, F. O. Kirchner, F. Krausz, and P. Baum, “ Single-electron pulses for ultrafast diffraction,” Proc. Natl. Acad. Sci. U.S.A. 107, 1971419719 (2010).
A. H. Zewail, “ Four-dimensional electron microscopy,” Science 328, 187193 (2010).
S. Lahme, C. Kealhofer, F. Krausz, and P. Baum, “ Femtosecond single-electron diffraction,” Struct. Dyn. 1, 034303 (2014).
V. A. Lobastov, R. Srinivasan, F. Vigliotti, C.-Y. Ruan, J. S. Feenstra, S. Chen, S. T. Park, S. Xu, and A. H. Zewail, in Ultrafast Optics IV, edited by F. Krausz, G. Korn, P. Corkum, and I. A. Walmsley ( Springer, New York, 2004), Vol. 95, pp. 419435.
L. Kasmi, D. Kreier, M. Bradler, E. Riedle, and P. Baum, “ Femtosecond single-electron pulses generated by two-photon photoemission close to the work function,” New J. Phys. 17, 033008 (2015).
K. Nagasawa, Y. Bando, and T. Takada, “ Crystal growth of vanadium oxides by chemical transport,” J. Cryst. Growth 17, 143148 (1972).
M. W. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S. V. Streltsov, M. A. Korotin, V. I. Anisimov, H. H. Hsieh, H.-J. Lin, C. T. Chen, D. I. Khomskii, and L. H. Tjeng, “ Orbital-assisted metal-insulator transition in VO2,” Phys. Rev. Lett. 95, 196404 (2005).
T. C. Koethe, Z. Hu, M. W. Haverkort, C. Schüßler-Langeheine, F. Venturini, N. B. Brookes, O. Tjernberg, W. Reichelt, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, “ Transfer of spectral weight and symmetry across the metal-insulator transition in VO2,” Phys. Rev. Lett. 97, 116402 (2006).
S. Wall, B. Krenzer, S. Wippermann, S. Sanna, F. Klasing, A. Hanisch-Blicharski, M. Kammler, W. G. Schmidt, and M. Horn-von Hoegen, “ Atomistic picture of charge density wave formation at surfaces,” Phys. Rev. Lett. 109, 186101 (2012).
J. B. Goodenough, “ The two components of crystallographic transition in VO2,” J. Solid State Chem. 3, 490500 (1971).
S. Biermann, A. Poteryaev, A. I. Lichtenstein, and A. Georges, “ Dynamical singlets and correlation-assisted Peierls transition in VO2,” Phys. Rev. Lett. 94, 026404 (2005).
A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “ Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
Given the X-ray wavelength (1.54 Å) and diffraction angle (13.9°) reported, the Bragg peak should be indexed as (011) of the M1 phase but was assigned as (110) of the M1 phase. Upon transformation the peak becomes (110) of the tetragonal phase.
M. Hada, K. Okimura, and J. Matsuo, “ Characterization of structural dynamics of VO2 thin film on c-Al2O3 using in-air time-resolved x-ray diffraction,” Phys. Rev. B 82, 153401 (2010).
M. Hada, K. Okimura, and J. Matsuo, “ Photo-induced lattice softening of excited-state VO2,” Appl. Phys. Lett. 99, 051903 (2011).
F. O. Kirchner, S. Lahme, F. Krausz, and P. Baum, “ Coherence of femtosecond single electrons exceeds biomolecular dimensions,” New J. Phys. 15, 063021 (2013).
N. Gedik, D.-S. Yang, G. Logvenov, I. Bozovic, and A. H. Zewail, “ Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography,” Science 316, 425429 (2007).
A. Gliserin, M. Walbran, F. Krausz, and P. Baum, “ Sub-phonon-period compression of electron pulses for atomic diffraction,” Nat. Commun. 6, 8723 (2015).
M. Walbran, A. Gliserin, K. Jung, J. Kim, and P. Baum, “ 5-femtosecond laser-electron synchronization for pump-probe crystallography and diffraction,” Phys. Rev. Appl. 4, 044013 (2015).
C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “ All-optical control and metrology of electron pulses,” Science 352, 429433 (2016).
K. D. Rogers, “ An X-ray diffraction study of semiconductor and metallic vanadium dioxide,” Powder Diffr. 8, 240 (1993).
J. H. Bechtel, “ Heating of solid targets with laser pulses,” J. Appl. Phys. 46, 15851593 (1975).
M. Borek, F. Qian, V. Nagabushnam, and R. K. Singh, “ Pulsed laser deposition of oriented VO2 thin films on R-cut sapphire substrates,” Appl. Phys. Lett. 63, 32883290 (1993).
D. H. Kim and H. S. Kwok, “ Pulsed laser deposition of VO2 thin films,” Appl. Phys. Lett. 65, 31883190 (1994).
Z. P. Wu, S. Yamamoto, A. Miyashita, Z. J. Zhang, K. Narumi, and H. Naramoto, “ Single-crystalline epitaxy and twinned structure of vanadium dioxide thin film on (0001) sapphire,” J. Phys.: Condens. Matter 10, L765L771 (1998).
S. Lysenko, V. Vikhnin, F. Fernandez, A. Rua, and H. Liu, “ Photoinduced insulator-to-metal phase transition in VO2 crystalline films and model of dielectric susceptibility,” Phys. Rev. B 75, 075109 (2007).
V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “ Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5, 14581 (2015).

Data & Media loading...


Article metrics loading...



Time-resolved electron diffraction with atomic-scale spatial and temporal resolution was used to unravel the transformation pathway in the photoinduced structural phase transition of vanadium dioxide. Results from bulk crystals and single-crystalline thin-films reveal a common, stepwise mechanism: First, there is a femtosecond V−V bond dilation within 300 fs, second, an intracell adjustment in picoseconds and, third, a nanoscale shear motion within tens of picoseconds. Experiments at different ambient temperatures and pump laser fluences reveal a temperature-dependent excitation threshold required to trigger the transitional reaction path of the atomic motions.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd