Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/4/10.1063/1.4936127
1.
1. J.-L. Brédas, D. Beljonne, V. Coropceanu, and J. Cornil, “ Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture,” Chem. Rev. 104, 49715003 (2004).
http://dx.doi.org/10.1021/cr040084k
2.
2. M. R. Wasielewski, “ Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems,” Acc. Chem. Res. 42, 1910 (2009).
http://dx.doi.org/10.1021/ar9001735
3.
3. F. Würthner and K. Meerholz, “ Systems chemistry approach in organic photovoltaic,” Chem. Eur. J. 16, 93669373 (2010).
http://dx.doi.org/10.1002/chem.201001153
4.
4. J. Roden, G. Schulz, A. Eisfeld, and J. S. Briggs, “ Energy transfer on a vibronically-coupled quantum aggregate,” J. Chem. Phys. 131, 044909 (2009).
http://dx.doi.org/10.1063/1.3176513
5.
5. J. Seibt, T. Winkler, K. Renziehausen, V. Dehm, F. Würthner, and V. Engel, “ Vibronic transitions and quantum dynamics in molecular oligomers: A theoretical analysis with an application to aggregates of perylene bisimides,” J. Phys. Chem. A 113, 1347513482 (2009).
http://dx.doi.org/10.1021/jp904892v
6.
6. M. Schröter, S. D. Ivanov, J. Schulze, S. P. Polyutov, Y. Yani, T. Pullerits, and O. Kühn, “ Exciton-vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates,” Phys. Rep. 567, 178 (2015).
http://dx.doi.org/10.1016/j.physrep.2014.12.001
7.
7. V. A. Malyshev, A. Rodriguez, and F. Dominguez-Adame, “ Linear optical properties of one-dimensional Frenkel exciton systems with intersite energy correlations,” Phys. Rev. B 60, 14140 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.14140
8.
8. M. Bednarz, V. A. Malyshev, and J. Knoester, “ Temperature dependent fluorescence in disordered Frenkel chains: Interplay of equilibration and local band-edge level structure,” Phys. Rev. Lett. 91, 217401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.217401
9.
9. M. Bednarz, V. A. Malyshev, and J. Knoester, “ Low-temperature dynamics of weakly localized frenkel excitons in disordered linear chains,” J. Chem. Phys. 120, 38273840 (2004).
http://dx.doi.org/10.1063/1.1643720
10.
10. A. G. Dijkstra, T. la Cour Jansen, and J. Knoester, “ Localization and coherent dynamics of excitons in the two-dimensional optical spectrum of molecular J-aggregates,” J. Chem. Phys. 128, 164511 (2008).
http://dx.doi.org/10.1063/1.2897753
11.
11. J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “ Two dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)01140-3
12.
12. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “ Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 15531555 (2003).
http://dx.doi.org/10.1126/science.1083433
13.
13. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “ Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184189 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.01.027
14.
14. T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “ Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 42214236 (2004).
http://dx.doi.org/10.1063/1.1776112
15.
15. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “ Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625 (2005).
http://dx.doi.org/10.1038/nature03429
16.
16. J. Wehner, A. Schubert, and V. Engel, “ Vibronic energy localization in weakly coupled small molecular aggregates,” Chem. Phys. Lett. 541, 49 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.05.034
17.
17. A. Schubert, M. Falge, M. Kess, V. Settels, S. Lochbrunner, W. T. Strunz, F. Würthner, B. Engels, and V. Engel, “ Theoretical analysis of the relaxation dynamics in perylene bisimide dimers excited by femtosecond laser pulses,” J. Phys. Chem. A 118, 1403 (2014).
http://dx.doi.org/10.1021/jp412166a
18.
18. A. H. Zewail, “ State-selective chemistry—Is it possible?,” Phys. Today 33(11), 27 (1980).
http://dx.doi.org/10.1063/1.2913821
19.
19. F. F. Crim, “ Vibrationally mediated photodissociation: Exploring excited-state surfaces and controlling decomposition pathways,” Ann. Rev. Phys. Chem. 44, 397428 (1993).
http://dx.doi.org/10.1146/annurev.pc.44.100193.002145
20.
20. O. Sinanoglu, in Modern Quantum Chemistry III, edited by Th. Förster ( Academic Press, New York, 1965), pp. 93137.
21.
21. M. Kasha, H. R. Rawls, and M. A. El-Bayoumi, “ Exciton model in molecular spectroscopy,” Pure Appl. Chem. 11, 371 (1995).
http://dx.doi.org/10.1351/pac196511030371
22.
22. R. L. Fulton and M. Gouterman, “ Vibronic coupling II. spectra of dimers,” J. Chem. Phys. 41, 22802286 (1964).
http://dx.doi.org/10.1063/1.1726260
23.
23. W. West and S. Pearce, “ The dimeric state of cyanine dyes,” J. Phys. Chem. 69, 18941903 (1965).
http://dx.doi.org/10.1021/j100890a019
24.
24. B. Kopainsky, J. K. Hallermeier, and W. Kaiser, “ The first step if aggregation of pic: the dimerization,” Chem. Phys. Lett. 83, 498502 (1981).
http://dx.doi.org/10.1016/0009-2614(81)85509-1
25.
25. A. Eisfeld, L. Braun, W. T. Strunz, J. S. Briggs, J. Beck, and V. Engel, “ Vibronic energies and spectra of molecular dimers,” J. Chem. Phys. 122, 134103 (2005).
http://dx.doi.org/10.1063/1.1861883
26.
26. J. S. Briggs and J. M. Rost, “ Time-dependence in quantum mechanics,” Euro. Phys. J. D 10, 311318 (2000).
http://dx.doi.org/10.1007/s100530050554
27.
27. M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, “ The multiconfiguration time-dependent Hartree method: A highly efficient algorithm for propagating wavepackets,” Phys. Rep. 324, 1105 (2000).
http://dx.doi.org/10.1016/S0370-1573(99)00047-2
28.
28. G. A. Worth, M. H. Beck, A. Jäckle, and H.-D. Meyer, The MCTDH Package, Version 8.2 (2000);
28. H.-D. Meyer, Version 8.3 (2002), Version 8.4 (2007), see http://www.pci.uni-heidelberg.de/tc/usr/mctdh/.
29.
29. J. Seibt, P. Marquetand, V. Engel, Z. Chen, V. Dehm, and F. Würthner, “ On the geometry dependence of molecular dimer spectra with an application to aggregates of perylene bisimide,” Chem. Phys. 328, 354 (2006).
http://dx.doi.org/10.1016/j.chemphys.2006.07.023
30.
30. J. Seibt, V. Dehm, F. Würthner, and V. Engel, “ Circular dichroism spectroscopy of small molecular aggregates: Dynamical features and size effects,” J. Chem. Phys. 128, 204303 (2008).
http://dx.doi.org/10.1063/1.2927301
31.
31. W. Domcke and G. Stock, “ Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time,” Adv. Chem. Phys. 100, 1 (1997).
32.
32. E. J. Heller, “ The semiclassical way to molecular spectroscopy,” Acc. Chem. Res. 14, 368375 (1981).
http://dx.doi.org/10.1021/ar00072a002
33.
33. R. Schinke, Photodissociation Dynamics ( Cambridge University Press, Cambridge, 1993).
34.
34. C. Brüning, K. Renziehausen, and V. Engel, “ On the parameterization of vibronic Hamiltonians for molecular aggregates using absorption line-shapes as an input,” J. Chem. Phys. 139, 054303 (2013).
http://dx.doi.org/10.1063/1.4816765
35.
35. R. L. Fulton and M. Gouterman, “ Vibronic coupling I. mathematical treatment for two electronic states,” J. Chem. Phys. 35, 10591071 (1961).
http://dx.doi.org/10.1063/1.1701181
36.
36. V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, 3rd ed. ( Wiley-VCH, Weinheim, 2011).
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/4/10.1063/1.4936127
Loading
/content/aca/journal/sdy/3/4/10.1063/1.4936127
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/4/10.1063/1.4936127
2015-11-17
2016-12-05

Abstract

A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/4/1.4936127.html;jsessionid=YRczKviI1I6lte_YolmnKKDg.x-aip-live-02?itemId=/content/aca/journal/sdy/3/4/10.1063/1.4936127&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/4/10.1063/1.4936127&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/4/10.1063/1.4936127'
Right1,Right2,Right3,