Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. D. Watson and F. H. C. Crick, “ Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid,” Nature 171, 737738 (1953).
2. R. E. Franklin and R. G. Gosling, “ Molecular configuration in sodium thymonucleate,” Nature 171, 740741 (1953).
3. W. Saenger, Principles of Nucleic Acid Structure ( Springer, Berlin, 1984), Chap. 17.
4. M. Egli et al., “ X-ray crystallographic analysis of the hydration of A- and B-form DNA at atomic resolution,” Biopolymers 48, 234252 (1998).<234::AID-BIP4>3.0.CO;2-H
5. N. Narayana and M. A. Weiss, “ Crystallographic analysis of a sex-specific enhancer element: Sequence-dependent DNA structure, hydration, and dynamics,” J. Mol. Biol. 385, 469490 (2009).
6. P. K. Mandal, S. Venkadesh, and N. Gautham, “ Structure of the tetradecanucleotide d(CCCCGGTACCGGGG)2 as an A-DNA duplex,” Acta Crystallogr. F 68, 393399 (2012).
7. B. Schneider, K. Patel, and H. M. Berman, “ Hydration of the phosphate group in double-helical DNA,” Biophys. J. 75, 24222434 (1998).
8. D. Vlieghe, J. P. Turkenburg, and L. van Meervelt, “ B-DNA at atomic resolution reveals extended hydration patterns,” Acta Crystallogr. D 55, 14951502 (1999).
9. M. Feig and B. M. Pettitt, “ Modeling high-resolution hydration patterns in correlation with DNA sequence and conformation,” J. Mol. Biol. 286, 10751095 (1999).
10. H. R. Drew and R. E. Dickerson, “ Structure of a B-DNA dodecamer. III. Geometry of hydration,” J. Mol. Biol. 151, 535556 (1981).
11. M. L. Kopka, A. V. Fratini, H. R. Drew, and R. E. Dickerson, “ Ordered water structure around a B-DNA dodecamer. A quantitative study,” J. Mol. Biol. 163, 129146 (1983).
12. R. Das, T. T. Mills, L. W. Kwok, G. S. Maskel, I. S. Millett, S. Doniach, K. D. Finkelstein, D. Herschlag, and L. Pollack, “ Counterion distribution around DNA probed by solution x-ray scattering,” Phys. Rev. Lett. 90, 188103 (2003).
13. M. A. Young, G. Ravishankar, and D. L. Beveridge, “ A 5-nanosecond molecular dynamics trajectory of B-DNA: Analysis of structure, motions, and solvation,” Biophys. J. 73, 23132336 (1997).
14. W. Saenger, W. N. Hunter, and O. Kennard, “ DNA conformation is determined by economics in the hydration of phosphate groups,” Nature 324, 385388 (1986).
15. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “ Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199202 (2005).
16. D. Kraemer, M. L. Cowan, A. Paarmann, N. Huse, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “ Temperature dependence of the two-dimensional infrared spectrum of liquid H2O,” Proc. Natl. Acad. Sci. U. S. A. 105, 437442 (2008).
17. T. l., C. Jansen, B. M. Auer, M. Yang, and J. L. Skinner, “ Two-dimensional infrared spectroscopy and ultrafast anisotropy decay of water,” J. Chem. Phys. 132, 224503 (2010).
18. S. Pal, P. K. Maiti, and B. Bagchi, “ Exploring DNA groove water dynamics through hydrogen bond lifetime and orientational relaxation,” J. Chem. Phys. 125, 234903 (2006).
19. K. E. Furse and S. A. Corcelli, “ The dynamics of water at DNA interfaces: Computational studies of Hoechst 33258 bound to DNA,” J. Am. Chem. Soc. 130, 1310313109 (2008).
20. A. C. Fogarty, E. Duboué-Dijon, F. Sterpone, J. T. Hynes, and D. Laage, “ Biomolecular hydration dynamics: A jump model perspective,” Chem. Soc. Rev. 42, 56725683 (2013).
21. S. Mukamel, “ Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691729 (2000).
22. P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy ( Cambridge University Press, Cambridge, 2011).
23. T. Siebert, B. Guchhait, Y. Liu, R. Costard, and T. Elsaesser, “ Anharmonic backbone vibrations in ultrafast processes at the DNA-water interface,” J. Phys. Chem. B 119, 96709877 (2015).
24. K. Tanaka and Y. Okahata, “ A DNA-lipid complex in organic media and formation of an aligned cast film,” J. Am. Chem. Soc. 118, 1067910683 (1996).
25. Ł. Szyc, J. R. Dwyer, E. T. J. Nibbering, and T. Elsaesser, “ Ultrafast dynamics of N-H and O-H stretching excitations in hydrated DNA oligomers,” Chem. Phys. 357, 3644 (2009).
26. J. R. Dwyer, Ł. Szyc, E. T. J. Nibbering, and T. Elsaesser, “ Note: An environmental cell for transient spectroscopy on solid samples in controlled atmospheres,” Rev. Sci. Instrum. 84, 036101 (2013).
27. M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, “ Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes,” Proc. Natl. Acad. Sci. U. S. A. 97, 82198224 (2000).
28. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “ Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184189 (2004).
29. M. Khalil, N. Demirdöven, and A. Tokmakoff, “ Coherent 2D IR spectroscopy: Molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 52585279 (2003).
30. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “ Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm,” J. Opt. Soc. Am. B 17, 20862094 (2000).
31. Y. Guan and G. Thomas, “ Vibrational analysis of nucleic acids. IV. Normal modes of the DNA phosphodiester structure modeled by diethyl phosphate,” Biopolymers 39, 813835 (1996).<813::AID-BIP7>3.3.CO;2-C
32. M. Banyay, M. Sarkar, and A. Gräslund, “ A library of IR bands of nucleic acids in solution,” Biophys. Chem. 104, 477488 (2003).
33. M. Falk, K. A. Hartman, and R. C. Lord, “ Hydration of DNA. II. An infrared study,” J. Am. Chem. Soc. 85, 387391 (1963).
34. Ł. Szyc, M. Yang, and T. Elsaesser, “ Ultrafast dynamics of water–phosphate interactions in hydrated DNA,” J. Phys. Chem. B 114, 79517957 (2010).
35. J. Kypr, I. Kejnovska, D. Renciuk, and M. Vorlickova, “ Circular dichroism and conformational polymorphism of DNA,” Nucleic Acids Res. 37, 17131725 (2009).
36. N. M. Levinson, E. E. Bolte, C. S. Miller, S. A. Corcelli, and S. G. Boxer, “ Phosphate vibrations probe local electric fields and hydration in biomolecules,” J. Am. Chem. Soc. 133, 1323613239 (2011).
37. R. Costard, T. Tyborski, B. P. Fingerhut, and T. Elsaesser, “ Ultrafast phosphate hydration dynamics in bulk H2O,” J. Chem. Phys. 142, 212406 (2015).
38. R. Costard, I. A. Heisler, and T. Elsaesser, “ Structural dynamics of hydrated phospholipid surfaces probed by ultrafast 2D spectroscopy of phosphate vibrations,” J. Phys. Chem. Lett. 5, 506 (2014).

Data & Media loading...


Article metrics loading...



DNA oligomers are studied at 0% and 92% relative humidity, corresponding to  < 2 and  > 20 water molecules per base pair. Two-dimensional (2D) infrared spectroscopy of DNA backbone modes between 920 and 1120 cm−1 maps fluctuating interactions at the DNAsurface. At both hydration levels, a frequency fluctuation correlation function with a 300 fs decay and a slow decay beyond 10 ps is derived from the 2D lineshapes. The fast component reflects motions of DNA helix, counterions, and water shell. Its higher amplitude at high hydration level reveals a significant contribution of water to the fluctuating forces. The slow component reflects disorder-induced inhomogeneous broadening.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd