Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/4/10.1063/1.4941600
1.
1. J. Bartl, S. Steenken, H. Mayr, and R. A. McClelland, J. Am. Chem. Soc. 112, 6918 (1990).
http://dx.doi.org/10.1021/ja00175a028
2.
2. P. K. Das, Chem. Rev. 93, 119144 (1993).
http://dx.doi.org/10.1021/cr00017a007
3.
3. R. A. McClelland, Tetrahedron 52, 68236858 (1996).
http://dx.doi.org/10.1016/0040-4020(96)00020-8
4.
4. J. Ammer, C. F. Sailer, E. Riedle, and H. Mayr, J. Am. Chem. Soc. 134, 1148111494 (2012).
http://dx.doi.org/10.1021/ja3017522
5.
5. C. F. Sailer, S. Thallmair, B. P. Fingerhut, C. Nolte, J. Ammer, H. Mayr, I. Pugliesi, R. de Vivie-Riedle, and E. Riedle, ChemPhysChem 14, 1423 (2013).
http://dx.doi.org/10.1002/cphc.201201057
6.
6. J. Ammer and H. Mayr, J. Phys. Org. Chem. 26, 956969 (2013).
http://dx.doi.org/10.1002/poc.3132
7.
7. H. Mayr, Tetrahedron 71, 50955111 (2015).
http://dx.doi.org/10.1016/j.tet.2015.05.055
8.
8. H. Mayr and M. Patz, Angew. Chem., Int. Ed. 33, 938957 (1994).
http://dx.doi.org/10.1002/anie.199409381
9.
9. H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, and H. Schimmel, J. Am. Chem. Soc. 123, 95009512 (2001).
http://dx.doi.org/10.1021/ja010890y
10.
10. H. Mayr, J. Ammer, M. Baidya, B. Maji, T. A. Nigst, A. R. Ofial, and T. Singer, J. Am. Chem. Soc. 137, 25802599 (2015).
http://dx.doi.org/10.1021/ja511639b
11.
11. J. D. Coe, M. T. Ong, B. G. Levine, and T. J. Martínez, J. Phys. Chem. A 112, 12559 (2008).
http://dx.doi.org/10.1021/jp806072k
12.
12. J. González-Vázquez and L. González, ChemPhysChem 11, 36173624 (2010).
http://dx.doi.org/10.1002/cphc.201000557
13.
13. P. Krause and S. Matsika, J. Chem. Phys. 136, 034110 (2012).
http://dx.doi.org/10.1063/1.3677273
14.
14. M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, and K. Morokuma, J. Phys. Chem. 100, 1935719363 (1996).
http://dx.doi.org/10.1021/jp962071j
15.
15. S. Dapprich, I. Komáromi, K. Byun, K. Morokuma, and M. J. Frisch, J. Mol. Struct.: THEOCHEM 461–462, 121 (1999).
http://dx.doi.org/10.1016/S0166-1280(98)00475-8
16.
16. T. Vreven and K. Morokuma, J. Chem. Phys. 113, 2969 (2000).
http://dx.doi.org/10.1063/1.1287059
17.
17. M. J. Bearpark, S. M. Larkin, and T. Vreven, J. Phys. Chem. A 112, 7286 (2008).
http://dx.doi.org/10.1021/jp802204w
18.
18. S. Thallmair, M. Kowalewski, J. P. P. Zauleck, M. K. Roos, and R. de Vivie-Riedle, J. Phys. Chem. Lett. 5, 34803485 (2014).
http://dx.doi.org/10.1021/jz501718t
19.
19. S. Thallmair, J. P. P. Zauleck, and R. de Vivie-Riedle, J. Chem. Theory Comput. 11, 19871995 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00046
20.
20. K. S. Peters, Chem. Rev. 107, 859 (2007).
http://dx.doi.org/10.1021/cr068021k
21.
21. C. F. Sailer, N. Krebs, B. P. Fingerhut, R. de Vivie-Riedle, and E. Riedle, EPJ Web Conf. 41, 05042 (2013).
http://dx.doi.org/10.1051/epjconf/20134105042
22.
22. B. P. Fingerhut, D. Geppert, and R. de Vivie-Riedle, Chem. Phys. 343, 329 (2008).
http://dx.doi.org/10.1016/j.chemphys.2007.07.034
23.
23. L. E. Manring and K. S. Peters, J. Phys. Chem. 88, 35163520 (1984).
http://dx.doi.org/10.1021/j150660a028
24.
24. T. Bizjak, J. Karpiuk, S. Lochbrunner, and E. Riedle, J. Phys. Chem. A 108, 1076310769 (2004).
http://dx.doi.org/10.1021/jp0473772
25.
25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, “Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009” (2009).
26.
26. H. Lischka, R. Shepard, I. Shavitt, R. M. Pitzer, M. Dallos, T. Müller, P. G. Szalay, F. B. Brown, R. Ahlrichs, H. J. Böhm, A. Chang, D. C. Comeau, R. Gdanitz, H. Dachsel, C. Ehrhardt, M. Ernzerhof, P. Höchtl, S. Irle, G. Kedziora, T. Kovar, V. Parasuk, M. J. M. Pepper, P. Scharf, H. Schiffer, M. Schindler, M. Schüler, M. Seth, E. A. Stahlberg, J.-G. Zhao, S. Yabushita, Z. Zhang, M. Barbatti, S. Matsika, M. Schuurmann, D. R. Yarkony, S. R. Brozell, E. V. Beck, J.-P. Blaudeau, M. Ruckenbauer, B. Sellner, F. Plasser, and J. J. Szymczak, “COLUMBUS, an ab initio electronic structure program, release 7.0” (2013).
27.
27. M. R. Manaa and D. R. Yarkony, J. Chem. Phys. 99, 5251 (1993).
http://dx.doi.org/10.1063/1.465993
28.
28. S. Matsika and D. R. Yarkony, J. Chem. Phys. 117, 6907 (2002).
http://dx.doi.org/10.1063/1.1513304
29.
29. M. Dallos, H. Lischka, R. Shepard, D. R. Yarkony, and P. G. Szalay, J. Chem. Phys. 120, 7330 (2004).
http://dx.doi.org/10.1063/1.1668631
30.
30. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, “MOLPRO, version 2012.1, a package of ab initio programs” (2012).
31.
31. M. J. Bearpark, M. A. Robb, and H. B. Schlegel, Chem. Phys. Lett. 223, 269274 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00433-1
32.
32. F. Eckert, P. Pulay, and H.-J. Werner, J. Comput. Chem. 18, 14731483 (1997).
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1473::AID-JCC5>3.0.CO;2-G
33.
33. F. Sicilia, L. Blancafort, M. J. Bearpark, and M. A. Robb, J. Chem. Theory Comput. 4, 257266 (2008).
http://dx.doi.org/10.1021/ct7002435
34.
34. H.-J. Werner and W. Meyer, J. Chem. Phys. 74, 5802 (1981).
http://dx.doi.org/10.1063/1.440893
35.
35. A. J. Dobbyn and P. J. Knowles, Mol. Phys. 91, 1107 (1997).
http://dx.doi.org/10.1080/002689797170842
36.
36. E. S. Kryachko and D. R. Yarkony, Int. J. Quantum Chem. 76, 235 (2000).
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)76:2<235::AID-QUA12>3.0.CO;2-Y
37.
37.See supplementary material at http://dx.doi.org/10.1063/1.4941600 for the two-dimensional diabatic PES of diphenylmethylchloride (Fig. S1), details of the QD simulations, and optimized geometries.[Supplementary Material]
38.
38. H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).
http://dx.doi.org/10.1063/1.448136
39.
39. B. Podolsky, Phys. Rev. 32, 812 (1928).
http://dx.doi.org/10.1103/PhysRev.32.812
40.
40. E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra ( Dover Publications, New York, 1980).
41.
41. L. Schaad and J. Hu, J. Mol. Struct.: THEOCHEM 185, 203 (1989).
http://dx.doi.org/10.1016/0166-1280(89)85014-6
42.
42. B. P. Fingerhut, C. F. Sailer, J. Ammer, E. Riedle, and R. de Vivie-Riedle, J. Phys. Chem. A 116, 1106411074 (2012).
http://dx.doi.org/10.1021/jp300986t
43.
43. S. Thallmair, B. P. Fingerhut, and R. de Vivie-Riedle, J. Phys. Chem. A 117, 1062610633 (2013).
http://dx.doi.org/10.1021/jp403082r
44.
44. Y. Zhao and D. Truhlar, Theor. Chem. Acc. 120, 215241 (2008).
http://dx.doi.org/10.1007/s00214-007-0310-x
45.
45. S. Thallmair, M. K. Roos, and R. de Vivie-Riedle, “ The design of specially adapted reactive coordinates to economically compute potential and kinetic energy operators including geometry relaxation” (unpublished).
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/4/10.1063/1.4941600
Loading
/content/aca/journal/sdy/3/4/10.1063/1.4941600
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/4/10.1063/1.4941600
2016-02-11
2016-12-05

Abstract

Photoinduced bond cleavage is often employed for the generation of highly reactive carbocations in solution and to study their reactivity. Diphenylmethyl derivatives are prominent precursors in polar and moderately polar solvents like acetonitrile or dichloromethane. Depending on the leaving group, the photoinduced bond cleavage occurs on a femtosecond to picosecond time scale and typically leads to two distinguishable products, the desired diphenylmethyl cations (PhCH+) and as competing by-product the diphenylmethyl radicals (). Conical intersections are the chief suspects for such ultrafast branching processes. We show for two typical examples, the neutral diphenylmethylchloride (PhCH–Cl) and the charged diphenylmethyltriphenylphosphonium ions () that the role of the conical intersections depends not only on the molecular features but also on the interplay with the environment. It turns out to differ significantly for both precursors. Our analysis is based on quantum chemical and quantum dynamical calculations. For comparison, we use ultrafast transient absorption measurements. In case of PhCH–Cl, we can directly connect the observed signals to two early three-state and two-state conical intersections, both close to the Franck-Condon region. In case of the , dynamic solvent effects are needed to activate a two-state conical intersection at larger distances along the reaction coordinate.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/4/1.4941600.html;jsessionid=7X621h5FXzWlbl_C3Rge7C47.x-aip-live-06?itemId=/content/aca/journal/sdy/3/4/10.1063/1.4941600&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/4/10.1063/1.4941600&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/4/10.1063/1.4941600'
Right1,Right2,Right3,