Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/4/10.1063/1.4941602
1.
1. P. Wernet, K. Kunnus, I. Josefsson, I. Rajkovic, W. Quevedo, M. Beye, S. Schreck, S. Grübel, M. Scholz, D. Nordlund, W. Zhang, R. W. Hartsock, W. F. Schlotter, J. J. Turner, B. Kennedy, F. Hennies, F. M. F. de Groot, K. J. Gaffney, S. Techert, M. Odelius, and A. Föhlisch, Nature 520, 78 (2015).
http://dx.doi.org/10.1038/nature14296
2.
2. J. Stöhr, NEXAFS Spectroscopy ( Springer, Berlin, 1992).
3.
3. P. Wernet, Phys. Chem. Chem. Phys. 13, 16941 (2011).
http://dx.doi.org/10.1039/c0cp02934c
4.
4. C. Bressler, C. Milne, V.-T. Pham, A. ElNahhas, R. M. van der Veen, W. Gawelda, S. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C. N. Borca, G. Ingold, R. Abela, and M. Chergui, Science 323, 489 (2009).
http://dx.doi.org/10.1126/science.1165733
5.
5. G. Vankó, P. Glatzel, V. T. Pham, R. Abela, D. Grolimund, C. N. Borca, S. L. Johnson, C. J. Milne, and C. Bressler, Angew. Chem., Int. Ed. 49, 5910 (2010).
http://dx.doi.org/10.1002/anie.201000844
6.
6. N. Huse, H. Cho, K. Hong, L. Jamula, F. M. F. de Groot, T. K. Kim, J. K. McCusker, and R. W. Schoenlein, J. Phys. Chem. Lett. 2, 880 (2011).
http://dx.doi.org/10.1021/jz200168m
7.
7. B. E. Van Kuiken, N. Huse, H. Cho, M. L. Strader, M. S. Lynch, R. W. Schoenlein, and M. Khalil, J. Phys. Chem. Lett. 3, 1695 (2012).
http://dx.doi.org/10.1021/jz300671e
8.
8. B. Ahr, M. Chollet, B. Adams, E. M. Lunny, C. M. Laperle, and C. Rose-Petruck, Phys. Chem. Chem. Phys. 13, 5590 (2011).
http://dx.doi.org/10.1039/c0cp01856b
9.
9. H. T. Lemke, C. Bressler, L. X. Chen, D. M. Fritz, K. J. Gaffney, A. Galler, W. Gawelda, K. Haldrup, R. W. Hartsock, H. Ihee, J. Kim, K. H. Kim, J. H. Lee, M. M. Nielsen, A. B. Stickrath, W. K. Zhang, D. L. Zhu, and M. Cammarata, J. Phys. Chem. A 117, 735 (2013).
http://dx.doi.org/10.1021/jp312559h
10.
10. M. Dell'Angela, T. Anniyev, M. Beye, R. Coffee, A. Föhlisch, J. Gladh, T. Katayama, S. Kaya, O. Krupin, J. LaRue, A. Møgelhøj, D. Nordlund, J. K. Nørskov, H. Oberg, H. Ogasawara, H. Oström, L. G. M. Pettersson, W. F. Schlotter, J. A. Sellberg, F. Sorgenfrei, J. J. Turner, M. Wolf, W. Wurth, and A. Nilsson, Science 339, 1302 (2013).
http://dx.doi.org/10.1126/science.1231711
11.
11. W. Zhang, R. Alonso-Mori, U. Bergmann, C. Bressler, M. Chollet, A. Galler, W. Gawelda, R. G. Hadt, R. W. Hartsock, T. Kroll, K. S. Kjær, K. Kubiček, H. T. Lemke, H. W. Liang, D. A. Meyer, M. M. Nielsen, C. Purser, J. S. Robinson, E. I. Solomon, Z. Sun, D. Sokaras, T. B. van Driel, G. Vankó, T.-C. Weng, D. Zhu, and K. J. Gaffney, Nature 509, 345 (2014).
http://dx.doi.org/10.1038/nature13252
12.
12. S. E. Canton, K. S. Kjær, G. Vankó, T. B. van Driel, S. Adachi, A. Bordage, C. Bressler, P. Chabera, M. Christensen, A. O. Dohn, A. Galler, W. Gawelda, D. Gosztola, K. Haldrup, T. Harlang, Y. Liu, K. B. Møller, Z. Németh, S. Nozawa, M. Pápai, T. Sato, T. Sato, K. Suarez-Alcantara, T. Togashi, K. Tono, J. Uhlig, D. A. Vithanage, K. Wärnmark, M. Yabashi, J. Zhang, V. Sundström, and M. M. Nielsen, Nat. Commun. 6, 6359 (2015).
http://dx.doi.org/10.1038/ncomms7359
13.
13. M. Beye, F. Sorgenfrei, W. F. Schlotter, W. Wurth, and A. Föhlisch, Proc. Natl. Acad. Sci. U. S. A. 107, 16772 (2010).
http://dx.doi.org/10.1073/pnas.1006499107
14.
14. T. Katayama, T. Anniyev, M. Beye, R. Coffee, M. Dell'Angela, A. Föhlisch, J. Gladh, S. Kaya, O. Krupin, A. Nilsson, D. Nordlund, W. F. Schlotter, J. A. Sellberg, F. Sorgenfrei, J. J. Turner, W. Wurth, H. Ostrom, and H. Ogasawara, J. Electron Spectrosc. Relat. Phenom. 187, 9 (2013).
http://dx.doi.org/10.1016/j.elspec.2013.03.006
15.
15. M. Beye, T. Anniyev, R. Coffee, M. Dell'Angela, A. Föhlisch, J. Gladh, T. Katayama, S. Kaya, O. Krupin, A. Mogelhoj, A. Nilsson, D. Nordlund, J. K. Norskov, H. Oberg, H. Ogasawara, L. G. M. Pettersson, W. F. Schlotter, J. A. Sellberg, F. Sorgenfrei, J. J. Turner, M. Wolf, W. Wurth, and H. Ostrom, Phys. Rev. Lett. 110, 186101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.186101
16.
16. H. Öström, H. Oberg, H. Xin, J. LaRue, M. Beye, M. Dell'Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kuhn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Fohlisch, M. Wolf, W. Wurth, M. Persson, J. K. Norskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, Science 27, 978 (2015).
http://dx.doi.org/10.1126/science.1261747
17.
17. M. Dartigue, Y. Dartigue, and H. B. Gray, Bull. Soc. Chim. Fr. 12, 4223 (1969).
18.
18. M. Kotzian, N. Rosch, H. Schroder, and M. C. Zerner, J. Am. Chem. Soc. 111, 7687 (1989).
http://dx.doi.org/10.1021/ja00202a004
19.
19. J. T. Yardley, B. Gitlin, G. Nathanson, and A. M. Rosan, J. Chem. Phys. 74, 370 (1981).
http://dx.doi.org/10.1063/1.440843
20.
20. O. Rubner, V. Engel, M. R. Hachey, and C. Daniel, Chem. Phys. Lett. 302, 489 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00149-9
21.
21. M. Wrighton, Chem. Rev. 74, 401 (1974).
http://dx.doi.org/10.1021/cr60290a001
22.
22. M. S. Wrighton, D. S. Ginley, M. A. Schroeder, and D. L. Morse, Pure Appl. Chem. 41, 671 (1975).
http://dx.doi.org/10.1351/pac197541040671
23.
23. N. Leadbeater, Coord. Chem. Rev. 188, 35 (1999).
http://dx.doi.org/10.1016/S0010-8545(98)00217-3
24.
24. M. Poliakoff and J. J. Turner, J. Chem. Soc. Faraday Trans. II 70, 93 (1974).
http://dx.doi.org/10.1039/f29747000093
25.
25. L. Bañares, T. Baumert, M. Bergt, B. Kiefer, and G. Gerber, Chem. Phys. Lett. 267, 141 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00067-5
26.
26. L. Bañares, T. Baumert, M. Bergt, B. Kiefer, and G. Gerber, J. Chem. Phys. 108, 5799 (1998).
http://dx.doi.org/10.1063/1.475991
27.
27. S. K. Nayak and T. J. Burkey, Inorg. Chem. 31, 1125 (1992).
http://dx.doi.org/10.1021/ic00033a002
28.
28. R. Ryther and E. Weitz, J. Phys. Chem. 95, 9841 (1991).
http://dx.doi.org/10.1021/j100177a043
29.
29. R. J. Ryther and E. Weitz, J. Phys. Chem. 96, 2561 (1992).
http://dx.doi.org/10.1021/j100185a031
30.
30. B. K. Venkataraman, G. Bandukwalla, Z. J. Zhang, and M. Vernon, J. Chem. Phys. 90, 5510 (1989).
http://dx.doi.org/10.1063/1.456404
31.
31. S. A. Trushin, W. Fuß, K. L. Kompa, and W. E. Schmid, J. Phys. Chem. A 104, 1997 (2000).
http://dx.doi.org/10.1021/jp992474u
32.
32. M. Poliakoff and E. Weitz, Acc. Chem. Res. 20, 408 (1987).
http://dx.doi.org/10.1021/ar00143a004
33.
33. E. Weitz, J. Phys. Chem. 91, 3945 (1987).
http://dx.doi.org/10.1021/j100299a007
34.
34. S. K. Nayak, G. J. Farrell, and T. J. Burkey, Inorg. Chem. 33, 2236 (1994).
http://dx.doi.org/10.1021/ic00088a028
35.
35. P. Portius, J. Yang, X. Z. Sun, D. C. Grills, P. Matousek, A. W. Parker, M. Towrie, and M. W. George, J. Am. Chem. Soc. 126, 10713 (2004).
http://dx.doi.org/10.1021/ja048411t
36.
36. M. Besora, J. L. Carreón-Macedo, A. J. Cowan, M. W. George, J. N. Harvey, P. Portius, K. L. Ronayne, X. Z. Sun, and M. Towrie, J. Am. Chem. Soc. 131, 3583 (2009).
http://dx.doi.org/10.1021/ja807149t
37.
37. S. C. Nguyen, J. P. Lomont, M. C. Zoerb, A. D. Hill, J. P. Schlegel, and C. B. Harris, Organometallics 31, 3980 (2012).
http://dx.doi.org/10.1021/om3002075
38.
38. S. P. Church, F.-W. Grevels, H. Hermann, J. M. Kelly, W. E. Klotzbucher, and K. Schaffner, J. Chem. Soc. Chem. Commun. 9, 594 (1985).
http://dx.doi.org/10.1039/c39850000594
39.
39. M. A. Schroeder and M. S. Wrighton, J. Am. Chem. Soc. 98, 551 (1976).
http://dx.doi.org/10.1021/ja00418a039
40.
40. P. T. Snee, C. K. Payn, K. T. Kotz, H. Yang, and C. B. Harris, J. Am. Chem. Soc. 123, 2255 (2001).
http://dx.doi.org/10.1021/ja002350r
41.
41. P. T. Snee, C. K. Payne, S. D. Mebane, K. T. Kotz, and C. B. Harris, J. Am. Chem. Soc. 123, 6909 (2001).
http://dx.doi.org/10.1021/ja010648r
42.
42. M. Poliakoff and J. J. Turner, Angew. Chem., Int. Ed. 40, 2809 (2001).
http://dx.doi.org/10.1002/1521-3773(20010803)40:15<2809::AID-ANIE2809>3.0.CO;2-U
43.
43. H. Ihee, J. M. Cao, and A. H. Zewail, Angew. Chem., Int. Ed. 40, 1532 (2001).
http://dx.doi.org/10.1002/1521-3773(20010417)40:8<1532::AID-ANIE1532>3.0.CO;2-E
44.
44. A. L. Harris, J. K. Brown, and C. B. Harris, Ann. Rev. Phys. Chem. 39, 341 (1988).
http://dx.doi.org/10.1146/annurev.pc.39.100188.002013
45.
45. R. M. Stratt and M. Maroncelli, J. Phys. Chem. 100, 12981 (1996).
http://dx.doi.org/10.1021/jp9608483
46.
46. C. G. Elles and F. F. Crim, Ann. Rev. Phys. Chem. 57, 273 (2006).
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104538
47.
47. Y. Jiang, T. Lee, and C. G. Rose-Petruck, J. Phys. Chem. A 107, 7524 (2003).
http://dx.doi.org/10.1021/jp0272522
48.
48. J. Lessing, X. Li, T. Lee, and C. G. Rose-Petruck, J. Phys. Chem. A 112, 2282 (2008).
http://dx.doi.org/10.1021/jp075421i
49.
49. J. P. Lomont, S. C. Nguyen, and C. B. Harris, Acc. Chem. Res. 47, 1634 (2014).
http://dx.doi.org/10.1021/ar500032d
50.
50. W. F. Schlotter, J. J. Turner, M. Rowen, P. Heimann, M. Holmes, O. Krupin, M. Messerschmidt, S. Moeller, J. Krzywinski, R. Soufli, M. Fernandez-Perea, N. Kelez, S. Lee, R. Coffee, G. Hays, M. Beye, N. Gerken, F. Sorgenfrei, S. Hau-Riege, L. Juha, J. Chalupsky, V. Hajkova, A. P. Mancuso, A. Singer, O. Yefanov, I. A. Vartanyants, G. Cadenazzi, B. Abbey, K. A. Nugent, H. Sinn, J. Luening, S. Schaffert, S. Eisebitt, W.-S. Lee, A. Scherz, A. R. Nilsson, and W. Wurth, Rev. Sci. Instrum. 83, 43107 (2012).
http://dx.doi.org/10.1063/1.3698294
51.
51. G. L. Dakovski, P. Heimann, M. Holmes, O. Krupin, M. P. Minitti, A. Mitra, S. Moeller, M. Rowen, W. F. Schlotter, and J. J. Turner, J. Synchrotron Radiat. 22, 498 (2015).
http://dx.doi.org/10.1107/S160057751500301X
52.
52. K. Kunnus, I. Rajkovic, S. Schreck, W. Quevedo, S. Eckert, M. Beye, E. Suljoti, C. Weniger, C. Kalus, S. Grübel, M. Scholz, D. Nordlund, W. Zhang, R. W. Hartsock, K. J. Gaffney, W. F. Schlotter, J. J. Turner, B. Kennedy, F. Hennies, S. Techert, P. Wernet, and A. Föhlisch, Rev. Sci. Instrum. 83, 123109 (2012).
http://dx.doi.org/10.1063/1.4772685
53.
53. K. Tiedtke, A. A. Sorokin, U. Jastrow, P. Juranić, S. Kreis, N. Gerken, M. Richter, U. Arp, Y. Feng, D. Nordlund, R. Soufli, M. Fernández-Perea, L. Juha, P. Heimann, B. Nagler, H. J. Lee, S. Mack, M. Cammarata, O. Krupin, M. Messerschmidt, M. Holmes, M. Rowen, W. Schlotter, S. Moeller, and J. J. Turner, Opt. Express 22, 21214 (2014).
http://dx.doi.org/10.1364/OE.22.021214
54.
54. I. Josefsson, K. Kunnus, S. Schreck, A. Föhlisch, F. De Groot, P. Wernet, and M. Odelius, J. Phys. Chem. Lett. 3, 3565 (2012).
http://dx.doi.org/10.1021/jz301479j
55.
55. K. Kunnus, I. Josefsson, S. Schreck, W. Quevedo, P. S. Miedema, S. Techert, F. M. F. De Groot, M. Odelius, P. Wernet, and A. Föhlisch, J. Phys. Chem. B 117, 16512 (2013).
http://dx.doi.org/10.1021/jp4100813
56.
56. S. I. Bokarev, M. Dantz, E. Suljoti, O. Kühn, and E. F. Aziz, Phys. Rev. Lett. 111, 83002 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.083002
57.
57. N. Engel, S. I. Bokarev, E. Suljoti, R. Garcia-Diez, K. M. Lange, K. Atak, R. Golnak, A. Kothe, M. Dantz, O. Kühn, and E. F. Aziz, J. Phys. Chem. B 118, 1555 (2014).
http://dx.doi.org/10.1021/jp411782y
58.
58. R. Pinjari, M. Delcey, M. Guo, M. Odelius, and M. Lundberg, J. Phys. Chem. 141, 124116 (2014).
http://dx.doi.org/10.1063/1.4896373
59.
59. P. Å. Malmqvist, A. Rendell, and B. O. Roos, J. Phys. Chem. 94, 5477 (1990).
http://dx.doi.org/10.1021/j100377a011
60.
60. E. Suljoti, R. Garcia-Diez, S. I. Bokarev, K. M. Lange, R. Schoch, B. Dierker, M. Dantz, K. Yamamoto, N. Engel, K. Atak, O. Kühn, M. Bauer, J. E. Rubensson, and E. F. Aziz, Angew. Chem., - Int. Ed. 52, 9841 (2013).
http://dx.doi.org/10.1002/anie.201303310
61.
61. H. A. Kramers and W. Heisenberg, Z. Phys. 31, 681 (1925).
http://dx.doi.org/10.1007/BF02980624
62.
62. F. Gel'mukhanov and H. Ågren, Phys. Rev. A 49, 4378 (1994).
http://dx.doi.org/10.1103/PhysRevA.49.4378
63.
63. M. Ohno and G. A. van Riessen, J. Electron Spectrosc. Relat. Phenom. 128, 1 (2003).
http://dx.doi.org/10.1016/S0368-2048(02)00210-4
64.
64. F. Hennies, A. Pietzsch, M. Berglund, A. Föhlisch, T. Schmitt, V. Strocov, H. O. Karlsson, J. Andersson, and J. E. Rubensson, Phys. Rev. Lett. 104, 193002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.193002
65.
65. Y.-P. Sun, F. Hennies, A. Pietzsch, B. Kennedy, T. Schmitt, V. N. Strocov, J. Andersson, M. Berglund, J.-E. Rubensson, K. Aidas, F. Gel'mukhanov, M. Odelius, and A. Föhlisch, Phys. Rev. B 84, 132202 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.132202
66.
66.CPMD, http://www.cpmd.org/, Copyright IBM Corp 1990–2008, Copyright MPI für Festkörperforschung Stuttgart 1997–2001.
67.
67. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2471
68.
68. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comput. Chem. 4, 187 (1983).
http://dx.doi.org/10.1002/jcc.540040211
69.
69. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
70.
70. S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
71.
71. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
72.
72. S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.1703
73.
73.See supplementary material at http://dx.doi.org/10.1063/1.4941602 for the complete results of the calculations and the rate models analysis (n.d.).[Supplementary Material]
74.
74. C. Daniel, M. Benard, A. Dedieu, R. Wiest, and A. Veillard, J. Phys. Chem. 88, 4805 (1984).
http://dx.doi.org/10.1021/j150665a004
75.
75. W. Gawelda, A. Cannizzo, V. T. Pham, F. van Mourik, C. Bressler, and M. Chergui, J. Am. Chem. Soc. 129, 8199 (2007).
http://dx.doi.org/10.1021/ja070454x
76.
76. E. A. Juban, A. L. Smeigh, J. E. Monat, and J. K. McCusker, Coord. Chem. Rev. 250, 1783 (2006).
http://dx.doi.org/10.1016/j.ccr.2006.02.010
77.
77. J. K. McCusker, Acc. Chem. Res. 36, 876 (2003).
http://dx.doi.org/10.1021/ar030111d
78.
78. M. Chergui, Acc. Chem. Res. 48, 801 (2015).
http://dx.doi.org/10.1021/ar500358q
79.
79. I. M. Waller and J. W. Hepburn, J. Chem. Phys. 88, 6658 (1988).
http://dx.doi.org/10.1063/1.454406
80.
80. B. M. Fung and T. W. McGaughy, J. Chem. Phys. 65, 2970 (1976).
http://dx.doi.org/10.1063/1.433533
81.
81. L. Saiz, J. A. Padro, and E. Guardia, J. Phys. Chem. B 101, 78 (1997).
http://dx.doi.org/10.1021/jp961786j
82.
82. J. A. Saxton, G. T. Coats, R. A. Bond, and R. M. Dickinson, J. Chem. Phys. 37, 2132 (1962).
http://dx.doi.org/10.1063/1.1733434
83.
83. S. E. Bromberg, H. Yang, M. C. Asplund, T. Lian, B. K. McNamara, K. T. Kotz, J. S. Yeston, M. Wilkens, H. Frei, R. G. Bergman, and C. B. Harris, Science 278, 260 (1997).
http://dx.doi.org/10.1126/science.278.5336.260
84.
84. M. Brookhart, M. L. H. Green, and G. Parkin, Proc. Natl. Acad. Sci. U. S. A. 104, 6908 (2007).
http://dx.doi.org/10.1073/pnas.0610747104
85.
85. J. D. Simon and X. Xie, J. Phys. Chem. 90, 6751 (1986).
http://dx.doi.org/10.1021/j100284a005
86.
86. A. G. Joly and K. A. Nelson, J. Phys. Chem. 93, 2876 (1989).
http://dx.doi.org/10.1021/j100345a004
87.
87. A. G. Joly and K. A. Nelson, Chem. Phys. 152, 69 (1991).
http://dx.doi.org/10.1016/0301-0104(91)80035-G
88.
88. K. T. Kotz, H. Yang, P. T. Snee, C. K. Payne, and C. B. Harris, J. Organomet. Chem. 596, 183 (2000).
http://dx.doi.org/10.1016/S0022-328X(99)00676-2
89.
89. J. D. Simon and X. Xie, J. Phys. Chem. 93, 291 (1989).
http://dx.doi.org/10.1021/j100338a059
90.
90. X. Xie and J. D. Simon, J. Am. Chem. Soc. 112, 1130 (1990).
http://dx.doi.org/10.1021/ja00159a037
91.
91. T. P. Dougherty and E. J. Heilweil, Chem. Phys. Lett. 227, 19 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00812-4
92.
92. T. Q. Lian, S. E. Bromberg, M. C. Asplund, H. Yang, and C. B. Harris, J. Phys. Chem. 100, 11994 (1996).
http://dx.doi.org/10.1021/jp9618035
93.
93. C. Bressler, W. Gawelda, A. Galler, M. M. Nielsen, V. Sundström, G. Doumy, A. M. March, S. H. Southworth, L. Young, and G. Vankó, Faraday Discuss. 171, 169 (2014).
http://dx.doi.org/10.1039/C4FD00097H
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/4/10.1063/1.4941602
Loading
/content/aca/journal/sdy/3/4/10.1063/1.4941602
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/4/10.1063/1.4941602
2016-02-09
2016-09-27

Abstract

We utilized femtosecond time-resolved resonant inelastic X-ray scattering and theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO) in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO) which are observed following a charge transfer photoexcitation of Fe(CO) as reported in our previous study [Wernet et al., Nature , 78 (2015)]. We find that branching of the reaction pathway likely happens in the 1A state of Fe(CO). A sub-picosecond time constant of the spin crossover from 1B to 3B is rationalized by the proposed 1B1A3B mechanism. Ultrafast ligation of the 1B Fe(CO) state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the 3B Fe(CO)ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via 1B1A1A′ Fe(CO)EtOH pathway and the time scale of the 1A Fe(CO) state ligation is governed by the solute-solvent collision frequency. Our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/4/1.4941602.html;jsessionid=jzkg48EkA0_MaK_43c2e3_9S.x-aip-live-02?itemId=/content/aca/journal/sdy/3/4/10.1063/1.4941602&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/4/10.1063/1.4941602&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/4/10.1063/1.4941602'
Right1,Right2,Right3,