Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/4/10.1063/1.4948516
1.
1. M. Jansen, Angew. Chem. Int. Ed. 26, 1098 (1987).
http://dx.doi.org/10.1002/anie.198710981
2.
2. P. Pyykko, Angew. Chem. Int. Ed. 43, 4412 (2004).
http://dx.doi.org/10.1002/anie.200300624
3.
3. S. G. Wang and W. H. E. Schwarz, J. Am. Chem. Soc. 126, 1266 (2004).
http://dx.doi.org/10.1021/ja035097e
4.
4. H. Schmidbaur and A. Schier, Chem. Soc. Rev. 37, 1931 (2008).
http://dx.doi.org/10.1039/b708845k
5.
5. L. Ray, M. M. Shaikh, and P. Ghosh, Inorg. Chem. 47, 230 (2008).
http://dx.doi.org/10.1021/ic701830m
6.
6. H. Schmidbaur and A. Schier, Chem. Soc. Rev. 41, 370 (2012).
http://dx.doi.org/10.1039/C1CS15182G
7.
7. H. Schmidbaur and A. Schier, Angew. Chem. Int. Ed. 54, 746 (2015).
http://dx.doi.org/10.1002/anie.201405936
8.
8. M. A. Rawashdeh-Omary, M. A. Omary, and H. H. Patterson, J. Am. Chem. Soc. 122, 10371 (2000).
http://dx.doi.org/10.1021/ja001545w
9.
9. M. A. Rawashdeh-Omary, M. A. Omary, H. H. Patterson, and J. P. Fackler, J. Am. Chem. Soc. 123, 11237 (2001).
http://dx.doi.org/10.1021/ja011176j
10.
10. M. Iwamura, K. Nozaki, S. Takeuchi, and T. Tahara, J. Am. Chem. Soc. 135, 538 (2013).
http://dx.doi.org/10.1021/ja310004z
11.
11. G. L. Cui, X. Y. Cao, W. H. Fang, M. Dolg, and W. Thiel, Angew. Chem. Int. Ed. 52, 10281 (2013).
http://dx.doi.org/10.1002/anie.201305487
12.
12. K. H. Kim, J. G. Kim, S. Nozawa, T. Sato, K. Y. Oang, T. Kim, H. Ki, J. Jo, S. Park, C. Song, T. Sato, K. Ogawa, T. Togashi, K. Tono, M. Yabashi, T. Ishikawa, J. Kim, R. Ryoo, J. Kim, H. Ihee, and S. Adachi, Nature 518, 385 (2015).
http://dx.doi.org/10.1038/nature14163
13.
13. J. G. Kim, K. H. Kim, K. Y. Oang, T. W. Kim, H. Ki, J. Jo, J. Kim, T. Sato, S. Nozawa, S. Adachi, and H. Ihee, J. Phys. B: At. Mol. Opt. Phys. 48, 244005 (2015).
http://dx.doi.org/10.1088/0953-4075/48/24/244005
14.
14. H. Ihee, M. Lorenc, T. K. Kim, Q. Y. Kong, M. Cammarata, J. H. Lee, S. Bratos, and M. Wulff, Science 309, 1223 (2005).
http://dx.doi.org/10.1126/science.1114782
15.
15. J. Davidsson, J. Poulsen, M. Cammarata, P. Georgiou, R. Wouts, G. Katona, F. Jacobson, A. Plech, M. Wulff, G. Nyman, and R. Neutze, Phys. Rev. Lett. 94, 245503 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.245503
16.
16. H. Ihee, Acc. Chem. Res. 42, 356 (2009).
http://dx.doi.org/10.1021/ar800168v
17.
17. K. H. Kim, J. H. Lee, J. Kim, S. Nozawa, T. Sato, A. Tomita, K. Ichiyanagi, H. Ki, J. Kim, S. Adachi, and H. Ihee, Phys. Rev. Lett. 110, 165505 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.165505
18.
18. M. Cammarata, M. Levantino, F. Schotte, P. A. Anfinrud, F. Ewald, J. Choi, A. Cupane, M. Wulff, and H. Ihee, Nat. Methods 5, 988 (2008).
http://dx.doi.org/10.1038/nmeth1108-988
19.
19. K. H. Kim, S. Muniyappan, K. Y. Oang, J. G. Kim, S. Nozawa, T. Sato, S. Y. Koshihara, R. Henning, I. Kosheleva, H. Ki, Y. Kim, T. W. Kim, J. Kim, S. Adachi, and H. Ihee, J. Am. Chem. Soc. 134, 7001 (2012).
http://dx.doi.org/10.1021/ja210856v
20.
20. D. Arnlund, L. C. Johansson, C. Wickstrand, A. Barty, G. J. Williams, E. Malmerberg, J. Davidsson, D. Milathianaki, D. P. DePonte, R. L. Shoeman, D. J. Wang, D. James, G. Katona, S. Westenhoff, T. A. White, A. Aquila, S. Bari, P. Berntsen, M. Bogan, T. B. van Driel, R. B. Doak, K. S. Kjaer, M. Frank, R. Fromme, I. Grotjohann, R. Henning, M. S. Hunter, R. A. Kirian, I. Kosheleva, C. Kupitz, M. N. Liang, A. V. Martin, M. M. Nielsen, M. Messerschmidt, M. M. Seibert, J. Sjohamn, F. Stellato, U. Weierstall, N. A. Zatsepin, J. C. H. Spence, P. Fromme, I. Schlichting, S. Boutet, G. Groenhof, H. N. Chapman, and R. Neutze, Nat. Methods 11, 923 (2014).
http://dx.doi.org/10.1038/nmeth.3067
21.
21. S. E. Canton, K. S. Kjaer, G. Vanko, T. B. van Driel, S. I. Adachi, A. Bordage, C. Bressler, P. Chabera, M. Christensen, A. O. Dohn, A. Galler, W. Gawelda, D. Gosztola, K. Haldrup, T. Harlang, Y. Z. Liu, K. B. Moller, Z. Nemeth, S. Nozawa, M. Papai, T. Sato, T. Sato, K. Suarez-Alcantara, T. Togashi, K. Tono, J. Uhlig, D. A. Vithanage, K. Warnmark, M. Yabashi, J. X. Zhang, V. Sundstrom, and M. M. Nielsen, Nat. Commun. 6, 6359 (2015).
http://dx.doi.org/10.1038/ncomms7359
22.
22. M. Iwamura, R. Wakabayashi, J. Maeba, K. Nozaki, S. Takeuchi, and T. Tahara, Phys. Chem. Chem. Phys. 18, 5103 (2016).
http://dx.doi.org/10.1039/C5CP06651D
23.
23. T. K. Kim, J. H. Lee, M. Wulff, Q. Y. Kong, and H. Ihee, Chemphyschem 10, 1958 (2009).
http://dx.doi.org/10.1002/cphc.200900154
24.
24. K. H. Kim, J. Kim, J. H. Lee, and H. Ihee, Struct. Dyn. 1, 011301 (2014).
http://dx.doi.org/10.1063/1.4865234
25.
25. Y. Inubushi, K. Tono, T. Togashi, T. Sato, T. Hatsui, T. Kameshima, K. Togawa, T. Hara, T. Tanaka, H. Tanaka, T. Ishikawa, and M. Yabashi, Phys. Rev. Lett. 109, 144801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.144801
26.
26. T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa, S. Goto, H. Hanaki, T. Hara, T. Hasegawa, T. Hatsui, A. Higashiya, T. Hirono, N. Hosoda, M. Ishii, T. Inagaki, Y. Inubushi, T. Itoga, Y. Joti, M. Kago, T. Kameshima, H. Kimura, Y. Kirihara, A. Kiyomichi, T. Kobayashi, C. Kondo, T. Kudo, H. Maesaka, X. M. Marechal, T. Masuda, S. Matsubara, T. Matsumoto, T. Matsushita, S. Matsui, M. Nagasono, N. Nariyama, H. Ohashi, T. Ohata, T. Ohshima, S. Ono, Y. Otake, C. Saji, T. Sakurai, T. Sato, K. Sawada, T. Seike, K. Shirasawa, T. Sugimoto, S. Suzuki, S. Takahashi, H. Takebe, K. Takeshita, K. Tamasaku, H. Tanaka, R. Tanaka, T. Tanaka, T. Togashi, K. Togawa, A. Tokuhisa, H. Tomizawa, K. Tono, S. K. Wu, M. Yabashi, M. Yamaga, A. Yamashita, K. Yanagida, C. Zhang, T. Shintake, H. Kitamura, and N. Kumagai, Nature Photon. 6, 540 (2012).
http://dx.doi.org/10.1038/nphoton.2012.141
27.
27. K. Tamasaku, E. Shigemasa, Y. Inubushi, T. Katayama, K. Sawada, H. Yumoto, H. Ohashi, H. Mimura, M. Yabashi, K. Yamauchi, and T. Ishikawa, Nature Photon. 8, 313 (2014).
http://dx.doi.org/10.1038/nphoton.2014.10
28.
28. K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, J. Synchrotron Radiat. 16, 391 (2009).
http://dx.doi.org/10.1107/S0909049509005986
29.
29. S. Jun, J. H. Lee, J. Kim, J. Kim, K. H. Kim, Q. Y. Kong, T. K. Kim, M. Lo Russo, M. Wulff, and H. Ihee, Phys. Chem. Chem. Phys. 12, 11536 (2010).
http://dx.doi.org/10.1039/c002004d
30.
30. F. James and M. Roos, Comput. Phys. Commun. 10, 343 (1975).
http://dx.doi.org/10.1016/0010-4655(75)90039-9
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/4/10.1063/1.4948516
Loading
/content/aca/journal/sdy/3/4/10.1063/1.4948516
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/4/10.1063/1.4948516
2016-04-29
2016-12-03

Abstract

The [Au(CN)] trimer in water experiences a strong van der Waals interaction between the d10gold atoms due to large relativistic effect and can serve as an excellent model system to study the bond formation process in real time. The trimer in the ground state (S) exists as a bent structure without the covalent bond between the gold atoms, and upon the laser excitation, one electron in the antibonding orbital goes to the bonding orbital, thereby inducing the formation of a covalent bond between gold atoms. This process has been studied by various time-resolved techniques, and most of the interpretation on the structure and dynamics converge except that the structure of the first intermediate (S) has been debated due to different interpretations between femtosecond optical spectroscopy and femtosecond X-ray solution scattering. Recently, the excitation wavelength of 267 nm employed in our previous scattering experiment was suggested as the culprit for misinterpretation. Here, we revisited this issue by performing femtosecond X-ray solution scattering with 310 nm excitation and compared the results with our previous study employing 267 nm excitation. The data show that a linear S structure is formed within 500 fs regardless of excitation wavelength and the structural dynamics observed at both excitation wavelengths are identical to each other within experimental errors.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/4/1.4948516.html;jsessionid=o7_0XPjSpklx48rq4pn0kx2q.x-aip-live-06?itemId=/content/aca/journal/sdy/3/4/10.1063/1.4948516&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/4/10.1063/1.4948516&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/4/10.1063/1.4948516'
Right1,Right2,Right3,