Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. I. Aviv and Z. Gross, Chem. Commun. 2007, 1987.
2. C. I. M. Santos, J. F. B. Barata, M. J. F. Calvete, L. S. H. P. Vale, D. Dini, M. Meneghetti, M. G. P. M. S. Neves, M. A. F. Faustino, A. C. Tome, and J. A. S. Cavaleiro, Curr. Org. Synth. 11, 29 (2014).
3. J. Vestfrid, M. Botoshansky, J. H. Palmer, A. C. Durrell, H. B. Gray, and Z. Gross, J. Am. Chem. Soc. 133, 12899 (2011).
4. L. Wagnert, R. Rubin, A. Berg, A. Mahammed, Z. Gross, and H. Levanon, J. Phys. Chem. B 114, 14303 (2010).
5. L. Wagnert, A. Berg, E. Stavitski, T. Berthold, G. Kothe, I. Goldberg, A. Mahammed, L. Simkhovich, Z. Gross, and H. Levanon, Appl. Magn. Reson. 30, 591 (2006).
6. C. M. Lemon, R. L. Halbach, M. Huynh, and D. G. Nocera, Inorg. Chem. 54, 2713 (2015).
7. B. J. Brennan, Y. C. Lam, P. M. Kim, X. Zhang, and G. W. Brudvig, ACS Appl. Mater. Interfaces 7(19), 1272812734 (2015).
8. I. Aviv-Harel and Z. Gross, Coord. Chem. Rev. 255, 717 (2011).
9. J. Palmer, in Molecular Electronic Structures of Transition Metal Complexes I, edited by D. M. P. Mingos, P. Day, and J. P. Dahl ( Springer, Berlin, Heidelberg, 2012), Vol. 142, p. 49.
10. D. Walker, S. Chappel, A. Mahammed, B. S. Brunschwig, J. R. Winkler, H. B. Gray, A. Zaban, and Z. Gross, J. Porphyrins Phthalocyanines 10, 1259 (2006).
11. J. Y. Hwang, D. J. Lubow, J. D. Sims, H. B. Gray, A. Mahammed, Z. Gross, L. K. Medina-Kauwe, and D. L. Farkas, J. Biomed. Opt. 17, 015003 (2012).
12. J. F. B. Barata, A. Zamarrón, M. G. P. M. S. Neves, M. A. F. Faustino, A. C. Tomé, J. A. S. Cavaleiro, B. Röder, Á. Juarranz, and F. Sanz-Rodríguez, Eur. J. Med. Chem. 92, 135 (2015).
13. J. Y. Hwang, D. J. Lubow, D. Chu, J. Sims, F. Alonso-Valenteen, H. B. Gray, Z. Gross, D. L. Farkas, and L. K. Medina-Kauwe, J. Controlled Release 163, 368 (2012).
14. H. Agadjanian, J. Ma, A. Rentsendorj, V. Valluripalli, J. Y. Hwang, A. Mahammed, D. L. Farkas, H. B. Gray, Z. Gross, and L. K. Medina-Kauwe, Proc. Natl. Acad. Sci. U.S.A. 106, 6105 (2009).
15. A. Preuss, I. Saltsman, A. Mahammed, M. Pfitzner, I. Goldberg, Z. Gross, and B. J. Roder, Photochem. Photobiol. B 133, 39 (2014).
16. J. Pohl, I. Saltsman, A. Mahammed, Z. Gross, and B. J. Roder, Appl. Microbiol. 118, 305 (2015).
17. J. Y. Hwang, Z. Gross, H. B. Gray, L. K. Medina-Kauwe, and D. L. Farkas, Proc SPIE 7902, 79020F (2011).
18. J. Y. Hwang, S. Wachsmann-Hogiu, V. K. Ramanujan, J. Ljubimova, Z. Gross, H. B. Gray, L. K. Medina-Kauwe, and D. L. Farkas, Mol. Imaging Biol. 14, 431 (2012).
19. I. Luobeznova, M. Raizman, I. Goldberg, and Z. Gross, Inorg. Chem. 45, 386 (2006).
20. J. F. B. Barata, A. L. Daniel-da-Silva, M. G. P. M. S. Neves, J. A. S. Cavaleiro, and T. Trindade, RSC Adv. 3, 274 (2013).
21. L. M. Reith, M. Himmelsbach, W. Schoefberger, and G. J. Knör, Photochem. Photobiol. A: Chem. 218, 247 (2011).
22. L. Flamigni and D. T. Gryko, Chem. Soc. Rev. 38, 1635 (2009).
23. L. Giribabu, J. Kandhadi, R. K. Kanaparthi, and P. S. Reeta, J. Lumin. 145, 357 (2014).
24. L. Giribabu, J. Kandhadi, and R. K. Kanaparthi, J. Fluoresc. 24(2), 569 (2014).
25. L. Shi, H.-Y. Liu, H. Shen, J. Hu, G.-L. Zhang, H. Wang, L.-N. Ji, C.-K. Chang, and H.-F. Jiang, J. Porphyrins Phthalocyanines 13, 1221 (2009).
26. J. Vestfrid, I. Goldberg, and Z. Gross, Inorg. Chem. 53, 10536 (2014).
27. E. Rabinovich, I. Goldberg, and Z. Gross, Chem. Eur. J. 17, 12294 (2011).
28. J. H. Palmer, A. C. Durrell, Z. Gross, J. R. Winkler, and H. B. Gray, J. Am. Chem. Soc. 132, 9230 (2010).
29. J. H. Palmer, M. W. Day, A. D. Wilson, L. M. Henling, Z. Gross, and H. B. Gray, J. Am. Chem. Soc. 130, 7786 (2008).
30. W. Shao, H. Wang, S. He, L. Shi, K. Peng, Y. Lin, L. Zhang, L. Ji, and H. J. Liu, Phys. Chem. B 116, 14228 (2012).
31. A. Mahammed, B. Tumanskii, and Z. Gross, J. Porphyrins Phthalocyanines 15, 1275 (2011).
32. L. Zhang, Z.-Y. Liu, X. Zhan, L.-L. Wang, H. Wang, and H.-Y. Liu, Photochem. Photobiol. Sci. 14, 953 (2015).
33. D. Kowalska, X. Liu, U. Tripathy, A. Mahammed, Z. Gross, S. Hirayama, and R. P. Steer, Inorg. Chem. 48, 2670 (2009).
34. X. Liu, A. Mahammed, U. Tripathy, Z. Gross, and R. P. Steer, Chem. Phys. Lett. 459, 113 (2008).
35. A. Mahammed and Z. Gross, Angew. Chem. Int. Ed. 54, 12370 (2015).
36. S. C. Omapinyan, Vibrational Spectroscopy of Porphyrins, Phthalocyanines and Tetraphenyl Derivatives of Group IV-A Elements ( University of East Anglia, 1997).
37. B. M. Leu, M. Z. Zgierski, C. Bischoff, M. Li, M. Y. Hu, J. Zhao, S. W. Martin, E. E. Alp, and W. R. Scheidt, Inorg. Chem. 52, 9948 (2013).
38. L. M. Proniewicz, A. Bruha, K. Nakamoto, E. Kyuno, and J. R. Kincaid, J. Am. Chem. Soc. 111, 7050 (1989).
39. T. Kitagawa and Y. Ozaki, in Metal Complexes with Tetrapyrrole Ligands I, edited by J. Buchler ( Springer, Berlin, Heidelberg, 1987), Vol. 64, p. 71.
40. E. Steene, T. Wondimagegn, and A. J. Ghosh, Inorg. Biochem. 88, 113 (2002).
41. V. V. Mody, M. B. Fitzpatrick, S. S. Zabaneh, R. S. Czernuszewicz, M. Gałęzowski, and D. T. Gryko, J. Porphyrins Phthalocyanines 13, 1040 (2009).
42. I. Halvorsen, E. Steene, and A. Ghosh, J. Porphyrins Phthalocyanines 05, 721 (2001).
43. I. H. Wasbotten, T. Wondimagegn, and A. Ghosh, J. Am. Chem. Soc. 124, 8104 (2002).
44. Y. Yang, D. Jones, T. von Haimberger, M. Linke, L. Wagnert, A. Berg, H. Levanon, A. Zacarias, A. Mahammed, Z. Gross, and K. Heyne, J. Phys. Chem. A 116, 1023 (2012).
45. S. S. K. Raavi, J. Yin, G. Grancini, C. Soci, S. V. Rao, G. Lanzani, and L. Giribabu, J. Phys. Chem. C 119, 28691 (2015).
46. Y. Yang, M. Linke, T. von Haimberger, R. Matute, L. González, P. Schmieder, and K. Heyne, Struct. Dyn. 1, 014701 (2014).
47. L. Linke, Y. Yang, B. Zienicke, M. A. S. Hammam, T. von Haimberger, A. Zacarias, K. Inomata, T. Lamparter, and K. Heyne, Biophys. J. 105, 1756 (2013).
48. T. Stensitzki, V. Muders, R. Schlesinger, J. Heberle, and K. Heyne, Front. Mol. Biosci. 2(41), 1 (2015).
49. A. Mahammed and Z. Gross, J. Inorg. Biochem. 88, 305 (2002).
50.See supplementary material at for a global fit of the visible data with four exponentials, an analysis of spectral shifts of visible and infrared data, and a lifetime map of vibrational dynamics.[Supplementary Material]

Data & Media loading...


Article metrics loading...



We combined femtosecond (fs) VIS pump–IR probe spectroscopy with fs VIS pump–supercontinuum probe spectroscopy to characterize the photoreaction of the hexacoordinated Al(tpfc-Br)(py) in a comprehensive way. Upon fs excitation at ∼400 nm in the Soret band, the excitation energy relaxes with a time constant of (250 ± 80) fs to the S and S electronic excited states. This is evident from the rise time of the stimulated emission signal in the visible spectral range. On the same time scale, narrowing of broad infrared signals in the C=C stretching region around 1500 cm−1 is observed. Energy redistribution processes are visible in the vibrational and electronic dynamics with time constants between ∼2 ps and ∼20 ps. Triplet formation is detected with a time constant of (95 ± 3) ps. This is tracked by the complete loss of stimulated emission. Electronic transition of the emerging triplet absorption band overlaps considerably with the singlet excited stateabsorption. In contrast, two well separated vibrational marker bands for triplet formation were identified at 1477 cm−1 and at 1508 cm−1. These marker bands allow a precise identification of triplet dynamics in corrole systems.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd