Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/5/10.1063/1.4958887
1.
N. Berrah and P. H. Bucksbaum, Sci. Am. 310, 6471 (2014).
http://dx.doi.org/10.1038/scientificamerican0114-64
2.
H. N. Chapman et al., Nature 470, 7377 (2011).
http://dx.doi.org/10.1038/nature09750
3.
A. Barty et al., Nature Photon. 6, 3540 (2012).
http://dx.doi.org/10.1038/nphoton.2011.297
4.
S. Boutet et al., Science 337, 362364 (2012).
http://dx.doi.org/10.1126/science.1217737
5.
L. Redecke et al., Science 339, 227230 (2013).
http://dx.doi.org/10.1126/science.1229663
6.
H. N. Chapman, Synchrotron Radiat. News 28, 20 (2015).
http://dx.doi.org/10.1080/08940886.2015.1101323
7.
R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, Nature 406, 752757 (2000).
http://dx.doi.org/10.1038/35021099
8.
M. J. Bogan et al., Nano Lett. 8(1), 310316 (2008).
http://dx.doi.org/10.1021/nl072728k
9.
S. P. Hau-Riege, R. A. London, G. Huldt, and H. N. Chapman, Phys. Rev. E 71, 061919 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.061919
10.
H. N. Chapman and K. A. Nugent, Nature Photon. 4, 833839 (2010).
http://dx.doi.org/10.1038/nphoton.2010.240
11.
A. Aquila, A. Barty et al., Struct. Dyn. 2, 041701 (2015).
http://dx.doi.org/10.1063/1.4918726
12.
S. P. Hau-Riege, R. A. London et al., Phys. Rev. Lett. 98, 198302 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.198302
13.
R. Neutze, Philos. Trans. R. Soc. B 369, 20130318 (2014).
http://dx.doi.org/10.1098/rstb.2013.0318
14.
H. N. Chapman, C. Caleman, and N. Timneanu, Philos. Trans. R. Soc. B 369, 20130313 (2014).
http://dx.doi.org/10.1098/rstb.2013.0313
15.
Z. Jurek, G. Oszlányi, and G. Faigel, Eur. Phys. Lett. 65, 491497 (2004).
http://dx.doi.org/10.1209/epl/i2003-10119-x
16.
A. Barty et al., Nature Photon. 2, 415419 (2008).
http://dx.doi.org/10.1038/nphoton.2008.128
17.
E. F. Garman, Acta Crystallogr. D 66, 339351 (2010).
http://dx.doi.org/10.1107/S0907444910008656
18.
S. Boutet and G. J. Williams, New J. Phys. 12, 035024 (2010).
http://dx.doi.org/10.1088/1367-2630/12/3/035024
19.
C. Caleman et al., ACS Nano 5, 139146 (2011).
http://dx.doi.org/10.1021/nn1020693
20.
H. M. Quiney and K. A. Nugent, Nat. Phys. 7, 142146 (2011).
http://dx.doi.org/10.1038/nphys1859
21.
S.-K. Son, L. Young, and R. Santra, Phys. Rev. A 83, 033402 (2011).
http://dx.doi.org/10.1103/PhysRevA.83.033402
22.
H. A. Scott, J. Quant. Spectrosc. Radiat. Transfer 71, 689701 (2001).
http://dx.doi.org/10.1016/S0022-4073(01)00109-1
23.
M. Bergh, N. Timneanu, and D. van der Spoel, Phys. Rev. E 70, 051904 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.051904
24.
S. P. Hau-Riege, R. A. London, and A. Szoke, Phys. Rev. E 69, 051906 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.051906
25.
Z. Jurek, G. Faigel, and M. Tegze, Eur. Phy. J. D 29, 217229 (2004).
http://dx.doi.org/10.1140/epjd/e2004-00033-3
26.
B. Ziaja, A. de Castro, E. Weckert, and T. Möller, Eur. Phys. J. D 40, 465480 (2006).
http://dx.doi.org/10.1140/epjd/e2006-00240-x
27.
C. Gnodtke, U. Saalmann, and J. M. Rost, Phys. Rev. A 79, 041201(R) (2009).
http://dx.doi.org/10.1103/PhysRevA.79.041201
28.
C. Caleman et al., J. Mod. Opt. 58, 14861497 (2011).
http://dx.doi.org/10.1080/09500340.2011.597519
29.
S. P. Hau-Riege, Phys. Rev. Lett. 108, 238101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.238101
30.
L. Fang et al., Phys. Rev. Lett. 109, 263001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.263001
31.
B. Murphy, Z. Jurek et al., Nat. Commun. 5, 4281 (2014).
http://dx.doi.org/10.1038/ncomms5281
32.
T. Tachibana, Z. Jurek et al., Sci. Rep. 5, 10977 (2015).
http://dx.doi.org/10.1038/srep10977
33.
Z. Jurek, S.-K. Son, B. Ziaja, and R. Santra, J. Appl. Cryst. 49, 10481056 (2016).
http://dx.doi.org/10.1107/S1600576716006014
34.
S.-K. Son and R. Santra, Phys. Rev. A 85, 063415 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.063415
35.
J. Kolfa and J. W. Perram, Mol. Simul. 9(5), 351368 (1992).
http://dx.doi.org/10.1080/08927029208049126
36.
M. Belhadj, H. Alper, and R. Levy, Chem. Phys. Lett. 179, 1320 (1991).
http://dx.doi.org/10.1016/0009-2614(91)90284-G
37.
N. Metropolis et al., J. Chem. Phys. 21, 10871092 (1953).
http://dx.doi.org/10.1063/1.1699114
38.
S. M. Vinko et al., Nat. Commun. 6, 6397 (2015).
http://dx.doi.org/10.1038/ncomms7397
39.
S. M. Vinko et al., Nature 482, 5962 (2012).
http://dx.doi.org/10.1038/nature10746
40.
B. Ziaja, R. A. London, and J. Hajdu, J. Appl. Phys. 97, 064905 (2005).
http://dx.doi.org/10.1063/1.1853494
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/5/10.1063/1.4958887
Loading
/content/aca/journal/sdy/3/5/10.1063/1.4958887
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/5/10.1063/1.4958887
2016-07-13
2016-12-06

Abstract

We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit, we employ a Monte-Carlo-molecular dynamics- hybrid framework using real space periodic boundary conditions. By combining all the units, we simulate the diffraction pattern of a crystal larger than the transverse x-ray beam profile, a situation commonly encountered in femtosecond nanocrystallography experiments with focused x-ray free-electron laser radiation. Radiation damage is not spatially uniform and depends on the fluence associated with each specific region inside the crystal. To investigate the effects of uniform and non-uniform fluence distribution, we have used two different spatial beam profiles, Gaussian and flattop.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/5/1.4958887.html;jsessionid=bfG0W7YX8JyuiQy_L2H5mSg2.x-aip-live-06?itemId=/content/aca/journal/sdy/3/5/10.1063/1.4958887&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/5/10.1063/1.4958887&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/5/10.1063/1.4958887'
Right1,Right2,Right3,