Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/5/10.1063/1.4961911
1.
M. E. Auldridge and K. T. Forest, “ Bacterial phytochromes: More than meets the light,” Crit. Rev. Biochem. Mol. Biol. 46, 6788 (2011).
http://dx.doi.org/10.3109/10409238.2010.546389
2.
G. Bae and G. Choi, “ Decoding of light signals by plant phytochromes and their interacting proteins,” Annu. Rev. Plant. Biol. 59, 281311 (2008).
http://dx.doi.org/10.1146/annurev.arplant.59.032607.092859
3.
J. Hughes, “ Phytochrome cytoplasmic signaling,” Annu. Rev. Plant. Biol. 64, 377402 (2013).
http://dx.doi.org/10.1146/annurev-arplant-050312-120045
4.
F. Andel III, J. C. Lagarias, and R. A. Mathies, “ Resonance Raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome,” Biochemistry 35, 1599716008 (1996).
http://dx.doi.org/10.1021/bi962175k
5.
M. A. Mroginski, D. H. Murgida, and P. Hildebrandt, “ The chromophore structural changes during the photocycle of phytochrome: A combined resonance Raman and quantum chemical approach,” Acc. Chem. Res. 40, 258266 (2007).
http://dx.doi.org/10.1021/ar6000523
6.
K. C. Toh, E. A. Stojkovic, I. H. van Stokkum, K. Moffat, and J. T. Kennis, “ Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome,” Proc. Natl. Acad. Sci. U.S.A. 107, 91709175 (2010).
http://dx.doi.org/10.1073/pnas.0911535107
7.
X. Yang, Z. Ren, J. Kuk, and K. Moffat, “ Temperature-scan cryocrystallography reveals reaction intermediates in bacteriophytochrome,” Nature 479, 428432 (2011).
http://dx.doi.org/10.1038/nature10506
8.
K. Anders, G. Daminelli-Widany, M. A. Mroginski, D. von Stetten, and L. O. Essen, “ Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling,” J. Biol. Chem. 288, 3571435725 (2013).
http://dx.doi.org/10.1074/jbc.M113.510461
9.
E. A. Stojkovic, K. C. Toh, M. T. Alexandre, M. Baclayon, K. Moffat, and J. T. Kennis, “ FTIR spectroscopy revealing light-dependent refolding of the conserved tongue region of bacteriophytochrome,” J. Phys. Chem. Lett. 5, 25122515 (2014).
http://dx.doi.org/10.1021/jz501189t
10.
H. Takala, A. Björling, O. Berntsson, H. Lehtivuori, S. Niebling, M. Hoernke, I. Kosheleva, R. Henning, A. Menzel, J. A. Ihalainen, and S. Westenhoff, “ Signal amplification and transduction in phytochrome photosensors,” Nature 509, 245248 (2014).
http://dx.doi.org/10.1038/nature13310
11.
L. O. Essen, J. Mailliet, and J. Hughes, “ The structure of a complete phytochrome sensory module in the Pr ground state,” Proc. Natl. Acad. Sci. U.S.A. 105, 1470914714 (2008).
http://dx.doi.org/10.1073/pnas.0806477105
12.
X. Yang, J. Kuk, and K. Moffat, “ Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction,” Proc. Natl. Acad. Sci. U.S.A. 105, 1471514720 (2008).
http://dx.doi.org/10.1073/pnas.0806718105
13.
M. P. Bhate, K. S. Molnar, M. Goulian, and W. F. DeGrado, “ Signal transduction in histidine kinases: Insights from new structures,” Structure 23, 981994 (2015).
http://dx.doi.org/10.1016/j.str.2015.04.002
14.
E. S. Burgie, J. Zhang, and R. D. Vierstra, “ Crystal structure of deinococcus phytochrome in the photoactivated state reveals a cascade of structural rearrangements during photoconversion,” Structure 24, 448 (2016).
http://dx.doi.org/10.1016/j.str.2016.01.001
15.
M. E. Auldridge, K. A. Satyshur, D. M. Anstrom, and K. T. Forest, “ Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein,” J. Biol. Chem. 287, 70007009 (2012).
http://dx.doi.org/10.1074/jbc.M111.295121
16.
H. Takala, A. Bjorling, M. Linna, S. Westenhoff, and J. A. Ihalainen, “ Light-induced changes in the dimerization interface of bacteriophytochromes,” J. Biol. Chem. 290, 1638316392 (2015).
http://dx.doi.org/10.1074/jbc.M115.650127
17.
H. Lehtivuori, I. Rissanen, H. Takala, J. Bamford, N. V. Tkachenko, and J. A. Ihalainen, “ Fluorescence properties of the chromophore-binding domain of bacteriophytochrome from Deinococcus radiodurans,” J. Phys. Chem. B 117, 1104911057 (2013).
http://dx.doi.org/10.1021/jp312061b
18.
H. Takala, H. Lehtivuori, H. Hammarén, V. P. Hytönen, and J. A. Ihalainen, “ Connection between absorption properties and conformational changes in Deinococcus radiodurans phytochrome,” Biochemistry 53, 70767085 (2014).
http://dx.doi.org/10.1021/bi501180s
19.
A. Bjorling, O. Berntsson, H. Takala, K. D. Gallagher, H. Patel, E. Gustavsson, R. St Peter, P. Duong, A. Nugent, F. Zhang, P. Berntsen, R. Appio, I. Rajkovic, H. Lehtivuori, M. R. Panman, M. Hoernke, S. Niebling, R. Harimoorthy, T. Lamparter, E. A. Stojkovic, J. A. Ihalainen, and S. Westenhoff, “ Ubiquitous structural signaling in bacterial phytochromes,” J. Phys. Chem. Lett. 6, 33793383 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01629
20.
S. Westenhoff, E. Malmerberg, D. Arnlund, L. Johansson, E. Nazarenko, M. Cammarata, J. Davidsson, V. Chaptal, J. Abramson, G. Katona, A. Menzel, and R. Neutze, “ Rapid readout detector captures protein time-resolved WAXS,” Nat. Methods 7, 775776 (2010).
http://dx.doi.org/10.1038/nmeth1010-775c
21.
A. Björling, O. Berntsson, H. Lehtivuori, H. Takala, A. J. Hughes, M. Panman, M. Hoernke, S. Niebling, L. Henry, R. Henning, I. Kosheleva, V. Chukharev, N. V. Tkachenko, A. Menzel, G. Newby, D. Khakhulin, M. Wulff, J. A. Ihalainen, and S. Westenhoff, “ Structural photoactivation of a full-length bacterial phytochrome,” Sci. Adv. 2, e1600920 (2016).
http://dx.doi.org/10.1126/sciadv.1600920
22.
B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “ GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation,” J. Chem. Theory Comput. 4, 435447 (2008).
http://dx.doi.org/10.1021/ct700301q
23.
S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl, “ GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit,” Bioinformatics 29, 845854 (2013).
http://dx.doi.org/10.1093/bioinformatics/btt055
24.
P. Bjelkmar, P. Larsson, M. A. Cuendet, B. Hess, and E. Lindahl, “ Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models,” J. Chem. Theory Comput. 6, 459466 (2010).
http://dx.doi.org/10.1021/ct900549r
25.
S. Kaminski, G. Daminelli, and M. A. Mroginski, “ Molecular dynamics simulations of the chromophore binding site of Deinococcus radiodurans bacteriophytochrome using new force field parameters for the phytochromobilin chromophore,” J. Phys. Chem. B 113, 945958 (2009).
http://dx.doi.org/10.1021/jp8047532
26.
G. Bussi, D. Donadio, and M. Parrinello, “ Canonical sampling through velocity rescaling,” J. Chem. Phys. 126, 014101 (2007).
http://dx.doi.org/10.1063/1.2408420
27.
M. Parrinello and A. Rahman, “ Polymorphic transitions in single crystals: A new molecular dynamics method,” J. Appl. Phys. 52, 71827190 (1981).
http://dx.doi.org/10.1063/1.328693
28.
S. Nosé and M. L. Klein, “ Constant pressure molecular dynamics for molecular systems,” Mol. Phys. 50, 10551076 (1983).
http://dx.doi.org/10.1080/00268978300102851
29.
B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, “ LINCS: A linear constraint solver for molecular simulations,” J. Comput. Chem. 18, 14631472 (1997).
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
30.
T. Darden, D. York, and L. Pedersen, “ Particle mesh Ewald: An N log(N) method for Ewald sums in large systems,” J. Chem. Phys. 98, 1008910092 (1993).
http://dx.doi.org/10.1063/1.464397
31.
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, “ A smooth particle mesh Ewald method,” J. Chem. Phys. 103, 85778593 (1995).
http://dx.doi.org/10.1063/1.470117
32.
H. Liu, A. Hexemer, and P. H. Zwart, “ The small angle scattering toolbox (SASTBX): An open-source software for biomolecular small-angle scattering,” J. Appl. Crystallogr. 45, 587593 (2012).
http://dx.doi.org/10.1107/S0021889812015786
33.
M. Cammarata, M. Levantino, F. Schotte, P. A. Anfinrud, F. Ewald, J. Choi, A. Cupane, M. Wulff, and H. Ihee, “ Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering,” Nat. Methods 5, 881886 (2008).
http://dx.doi.org/10.1038/nmeth.1255
34.
M. Andersson, E. Malmerberg, S. Westenhoff, G. Katona, M. Cammarata, A. B. Wohri, L. C. Johansson, F. Ewald, M. Eklund, M. Wulff, J. Davidsson, and R. Neutze, “ Structural dynamics of light-driven proton pumps,” Structure 17, 12651275 (2009).
http://dx.doi.org/10.1016/j.str.2009.07.007
35.
F. Velazquez Escobar, P. Piwowarski, J. Salewski, N. Michael, M. Fernandez Lopez, A. Rupp, B. M. Qureshi, P. Scheerer, F. Bartl, N. Frankenberg-Dinkel, F. Siebert, M. Andrea Mroginski, and P. Hildebrandt, “ A protonation-coupled feedback mechanism controls the signalling process in bathy phytochromes,” Nat. Chem. 7, 423430 (2015).
http://dx.doi.org/10.1038/nchem.2225
36.
H. Foerstendorf, C. Benda, W. Gartner, M. Storf, H. Scheer, and F. Siebert, “ FTIR studies of phytochrome photoreactions reveal the C=O bands of the chromophore: Consequences for its protonation states, conformation, and protein interaction,” Biochemistry 40, 1495214959 (2001).
http://dx.doi.org/10.1021/bi0156916
37.
H. Li, J. Zhang, R. D. Vierstra, and H. Li, “ Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107, 1087210877 (2010).
http://dx.doi.org/10.1073/pnas.1001908107
38.
E. S. Burgie, T. Wang, A. N. Bussell, J. M. Walker, H. Li, and R. D. Vierstra, “ Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion,” J. Biol. Chem. 289, 2457324587 (2014).
http://dx.doi.org/10.1074/jbc.M114.571661
39.
P. Piwowarski, E. Ritter, K. P. Hofmann, P. Hildebrandt, D. von Stetten, P. Scheerer, N. Michael, T. Lamparter, and F. Bartl, “ Light-induced activation of bacterial phytochrome Agp1 monitored by static and time-resolved FTIR spectroscopy,” Chemphyschem 11, 12071214 (2010).
http://dx.doi.org/10.1002/cphc.200901008
40.
J. J. van Thor, N. Fisher, and P. R. Rich, “ Assignments of the Pfr-Pr FTIR difference spectrum of cyanobacterial phytochrome Cph1 using 15N and 13C isotopically labeled phycocyanobilin chromophore,” J. Phys. Chem. B 109, 2059720604 (2005).
http://dx.doi.org/10.1021/jp052323t
41.
E. S. Burgie, A. N. Bussell, J. M. Walker, K. Dubiel, and R. D. Vierstra, “ Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome,” Proc. Natl. Acad. Sci. U.S.A. 111, 1017910184 (2014).
http://dx.doi.org/10.1073/pnas.1403096111
42.
X. Yang, E. A. Stojkovic, W. B. Ozarowski, J. Kuk, E. Davydova, and K. Moffat, “ Light signaling mechanism of two tandem bacteriophytochromes,” Structure 23, 11791189 (2015).
http://dx.doi.org/10.1016/j.str.2015.04.022
43.
D. Bellini and M. Z. Papiz, “ Structure of a bacteriophytochrome and light-stimulated protomer swapping with a gene repressor,” Structure 20, 14361446 (2012).
http://dx.doi.org/10.1016/j.str.2012.06.002
44.
K. Evans, J. G. Grossmann, A. P. Fordham-Skelton, and M. Z. Papiz, “ Small-angle X-ray scattering reveals the solution structure of a bacteriophytochrome in the catalytically active Pr state,” J. Mol. Biol. 364, 655666 (2006).
http://dx.doi.org/10.1016/j.jmb.2006.09.045
45.
A. M. Jones and H. P. Erickson, “ Domain structure of phytochrome from Avena sativa visualized by electron microscopy,” Photochem. Photobiol. 49, 479483 (1989).
http://dx.doi.org/10.1111/j.1751-1097.1989.tb09198.x
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/5/10.1063/1.4961911
Loading
/content/aca/journal/sdy/3/5/10.1063/1.4961911
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/5/10.1063/1.4961911
2016-08-29
2016-12-10

Abstract

Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of the phytochrome photosensory core is sufficient to perform the light-induced structural changes. This implies that allosteric cooperation with the other monomer is not needed for structural activation. The dimeric arrangement may instead be intrinsic to the biochemical output domains of bacterial phytochromes.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/5/1.4961911.html;jsessionid=GC1GTDkKgU3JOOblqZTwQenJ.x-aip-live-03?itemId=/content/aca/journal/sdy/3/5/10.1063/1.4961911&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/5/10.1063/1.4961911&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/5/10.1063/1.4961911'
Right1,Right2,Right3,