Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. E. Thompson and S. Parthasarathy, “ Moore's law: The future of Si microelectronics,” Mater. Today 9, 2025 (2006).
M. V. Fischetti and S. E. Laux, “ Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80, 22342252 (1996).
S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, and T. Hoffman, “ A 90-nm logic technology featuring strained-silicon,” IEEE Trans. Electron Devices 51, 17901797 (2004).
D. Auston and C. Shank, “ Picosecond ellipsometry of transient electron-hole plasmas in germanium,” Phys. Rev. Lett. 32, 1120 (1974).
D. Auston, C. Shank, and P. LeFur, “ Picosecond optical measurements of band-to-band auger recombination of high-density plasmas in germanium,” Phys. Rev. Lett. 35, 1022 (1975).
D. Pile, “ X-rays first light from SACLA,” Nat. Photonics 5, 456457 (2011).
S. Khan, “ Free-electron lasers,” J. Mod. Opt. 55, 34693512 (2008).
R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, “ Generation of femtosecond pulses of synchrotron radiation,” Science 287, 22372240 (2000).
M. M. Murnane, H. C. Kapteyn, M. D. Rosen, and R. W. Falcone, “ Ultrafast x-ray pulses from laser-produced plasmas,” Science 251, 531536 (1991).
C. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, and A. Antonetti, “ Femtosecond time-resolved x-ray diffraction from laser-heated organic films,” Nature 390, 490492 (1997).
C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, “ Picosecond-milliangstrom lattice dynamics measured by ultrafast x-ray diffraction,” Nature 398, 310312 (1999).
F. Zamponi, Z. Ansari, C. von Korff Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “ Femtosecond hard x-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A: Mater. Sci. Process. 96, 5158 (2009).
C. Reich, P. Gibbon, I. Uschmann, and E. Förster, “ Yield optimization and time structure of femtosecond laser plasma Kα sources,” Phys. Rev. Lett. 84, 48464849 (2000).
M. Woerner, F. Zamponi, Z. Ansari, J. Dreyer, B. Freyer, M. Prémont-Schwarz, and T. Elsaesser, “ Concerted electron and proton transfer in ionic crystals mapped by femtosecond x-ray powder diffraction,” J. Chem. Phys. 133, 064509 (2010).
A. H. Chin, R. W. Schoenlein, T. E. Glover, P. Balling, W. P. Leemans, and C. V. Shank, “ Ultrafast structural dynamics in InSb probed by time-resolved x-ray diffraction,” Phys. Rev. Lett. 83, 336339 (1999).
A. M. Lindenberg, I. Kang, S. L. Johnson, T. Missalla, P. A. Heimann, Z. Chang, J. Larsson, P. H. Bucksbaum, H. C. Kapteyn, H. A. Padmore, R. W. Lee, J. S. Wark, and R. W. Falcone, “ Time-resolved x-ray diffraction from coherent phonons during a laser-induced phase transition,” Phys. Rev. Lett. 84, 111114 (2000).
D. A. Reis, M. F. DeCamp, P. H. Bucksbaum, R. Clarke, E. Dufresne, M. Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M. M. Murnane, J. Larsson, T. Missalla, and J. S. Wark, “ Probing impulsive strain propagation with x-ray pulses,” Phys. Rev. Lett. 86, 30723075 (2001).
M. F. DeCamp, D. A. Reis, A. Cavalieri, P. H. Bucksbaum, R. Clarke, R. Merlin, E. M. Dufresne, D. A. Arms, A. M. Lindenberg, A. G. MacPhee, Z. Chang, B. Lings, J. S. Wark, and S. Fahy, “ Transient strain driven by a dense electron-hole plasma,” Phys. Rev. Lett. 91, 165502 (2003).
C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “ Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 41294138 (1986).
A. Lietoila and J. F. Gibbons, “ Computer modeling of the temperature rise and carrier concentration induced in silicon by nanosecond laser pulses,” J. Appl. Phys. 53, 32073213 (1982).
A. Lietoila and J. F. Gibbons, “ Calculation of carrier and lattice temperatures induced in Si by picosecond laser pulses,” Appl. Phys. Lett. 40, 624626 (1982).
B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. Anisimov, “ Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767769 (2004).
A. Morak, T. Kämpfer, I. Uschmann, A. Lübcke, E. Förster, and R. Sauerbrey, “ Acoustic phonons in InSb probed by time-resolved x-ray diffraction,” Phys. Status Solidi B 243, 27282744 (2006).
K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, and D. von der Linde, “ Femtosecond x-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287289 (2003).
A. Authier, International Tables for Crystallography ( John Wiley & Sons, Ltd., 2006).
T. Missalla, I. Uschmann, E. Förster, G. Jenke, and D. von der Linde, “ Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 12881299 (1999).
F. Zamponi, T. Kämpfer, A. Morak, I. Uschmann, and E. Förster, “ Characterization of a deep depletion, back-illuminated charge-coupled device in the x-ray range,” Rev. Sci. Instrum. 76, 116101 (2005).
W. J. Bartels, J. Hornstra, and D. J. W. Lobeek, “ X-ray diffraction of multilayers and superlattices,” Acta Crystallogr., Sect. A 42, 539545 (1986).
K. Sokolowski-Tinten and D. von der Linde, “ Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 26432650 (2000).

Data & Media loading...


Article metrics loading...



We explore the InSb-semiconductor lattice dynamics after excitation of high density electron-hole plasma with an ultrashort and intense laser pulse. By using time resolved x-ray diffraction, a sub-mÅ and sub-ps resolution was achieved. Thus, a strain of 4% was measured in a 3 nm thin surface layer 2 ps after excitation. The lattice strain was observed for the first 5 ps as exponentially decaying, changing rapidly by time and by depth. The observed phenomena can only be understood assuming nonlinear time dependent laser absorption where the absorption depth decreases by a factor of twenty compared to linear absorption.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd