Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, “ Ultrafast spin dynamics in ferromagnetic nickel,” Phys. Rev. Lett. 76, 42504253 (1996).
C. Boeglin, E. Beaurepaire, V. Halte, V. Lopez-Flores, C. Stamm, N. Pontius, H. A. Dürr, and J.-Y. Bigot, “ Distinguishing the ultrafast dynamics of spin and orbital moments in solids,” Nature 465, 458461 (2010).
B. Y. Mueller, T. Roth, M. Cinchetti, M. Aeschlimann, and B. Rethfeld, “ Driving force of ultrafast magnetization dynamics,” New J. Phys. 13, 123010 (2011).
A. Fognini, T. Michlmayr, G. Salvatella, C. Wetli, U. Ramsperger, T. Bähler, F. Sorgenfrei, M. Beye, A. Eschenlohr, N. Pontius, C. Stamm, F. Hieke, M. Dell'Angela, S. D. Jong, R. Kukreja, N. Gerasimova, V. Rybnikov, A. Al-Shemmary, H. Redlin, J. Raabe, A. Föhlisch, H. A. Dürr, W. Wurth, D. Pescia, A. Vaterlaus, and Y. Acremann, “ Ultrafast reduction of the total magnetization in iron,” Appl. Phys. Lett. 104, 032402 (2014).
M. Battiato, K. Carva, and P. M. Oppeneer, “ Superdiffusive spin transport as a mechanism of ultrafast demagnetization,” Phys. Rev. Lett. 105, 027203 (2010).
A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel, K. Holldack, R. Mitzner, A. Föhlisch, P. M. Oppeneer, and C. Stamm, “ Ultrafast spin transport as key to femtosecond demagnetization,” Nat. Mater. 12, 332 (2013).
R. J. Elliott, “ Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors,” Phys. Rev. 96, 266279 (1954).
D. Steiauf and M. Fähnle, “ Elliott-Yafet mechanism and the discussion of femtosecond magnetization dynamics,” Phys. Rev. B 79, 140401 (2009).
B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M. Fähnle, T. Roth, M. Cinchetti, and M. Aeschlimann, “ Explaining the paradoxical diversity of ultrafast laser-induced demagnetization,” Nat. Mater. 9, 259265 (2010).
B. Pfau, S. Schaffert, L. Müller, C. Gutt, A. Al-Shemmary, F. Büttner, R. Delaunay, S. Düsterer, S. Flewett, R. Frömter, J. Geilhufe, E. Guehrs, C. M. Günther, R. Hawaldar, M. Hille, N. Jaouen, A. Kobs, K. Li, J. Mohanty, H. Redlin, W. F. Schlotter, D. Stickler, R. Treusch, B. Vodungbo, M. Kläui, H. P. Oepen, J. Lüning, G. Grübel, and S. Eisebitt, “ Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls,” Nat. Commun. 3, 1100 (2012).
A. Melnikov, I. Razdolski, T. O. Wehling, E. T. Papaioannou, V. Roddatis, P. Fumagalli, O. Aktsipetrov, A. I. Lichtenstein, and U. Bovensiepen, “ Ultrafast transport of laser-excited spin-polarized carriers in ,” Phys. Rev. Lett. 107, 076601 (2011).
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. Oppeneer, and M. Munzenberg, “ Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nano 8, 256260 (2013).
A. J. Schellekens, K. C. Kuiper, R. R. J. C. de Wit, and B. Koopmans, “ Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation,” Nat. Commun. 5, 4333 (2014).
G.-M. Choi, B.-C. Min, K.-J. Lee, and D. G. Cahill, “ Spin current generated by thermally driven ultrafast demagnetization,” Nat. Commun. 5, 4334 (2014).
A. R. Khorsand, M. Savoini, A. Kirilyuk, and T. Rasing, “ Optical excitation of thin magnetic layers in multilayer structures,” Nat. Mater. 13, 101102 (2014).
A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel, K. Holldack, R. Mitzner, A. Föhlisch, P. M. Oppeneer, and C. Stamm, “ Reply to 'optical excitation of thin magnetic layers in multilayer structures,' ” Nat. Mater. 13, 102103 (2014).
B. Vodungbo, B. Tudu, J. Perron, R. Delaunay, L. Müller, M. H. Berntsen, G. Grübel, G. Malinowski, C. Weier, J. Gautier, G. Lambert, P. Zeitoun, C. Gutt, E. Jal, A. Reid, P. Granitzka, N. Jaouen, G. Dakovski, S. Moeller, M. Minitti, A. Mitra, S. Carron, B. Pfau, C. von Korff Schmising, M. Schneider, S. Eisebitt, and J. Lüning, “ Indirect excitation of ultrafast demagnetization,” Sci. Rep. 6, 18970 (2016).
B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, “ Ultrafast magneto-optics in nickel: Magnetism or optics?,” Phys. Rev. Lett. 85, 844847 (2000).
P. M. Oppeneer and A. Liebsch, “ Ultrafast demagnetization in Ni: theory of magneto-optics for non-equilibrium electron distributions,” J. Phys.: Condens. Matter 16, 5519 (2004).
A. Fognini, G. Salvatella, R. Gort, T. Michlmayr, A. Vaterlaus, and Y. Acremann, “ The influence of the excitation pulse length on ultrafast magnetization dynamics in nickel,” Struct. Dyn. 2, 024501 (2015).
J. Garduño-Mejía, M. P. Higlett, and S. R. Meech, “ Modelling the influence of nonthermal electron dynamics in thin and ultrathin gold films,” Chem. Phys. 341, 276284 (2007).
Z. Lin, L. V. Zhigilei, and V. Celli, “ Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
C. Ho, R. Powell, and P. Liley, J. Phys. Chem. Ref. Data 3, I-37, I-461 (1974).
J. P. Landry, “ Optical oblique-incidence reflectivity difference microscopy: application to label-free detection of reactions in biomolecular microarrays,” Ph.D. thesis ( University of California, Davis, 2008).
M. N. Polyanskiy, for Refractive index database; accessed 18 July 2016.
S. V. Popov, Y. P. Svirko, and N. I. Zheludev, “ Pump–probe reflective polarization-sensitive nonlinear optics,” J. Opt. Soc. Am. B 13, 27292738 (1996).
V. V. Kruglyak, R. J. Hicken, M. Ali, B. J. Hickey, A. T. G. Pym, and B. K. Tanner, “ Measurement of hot electron momentum relaxation times in metals by femtosecond ellipsometry,” Phys. Rev. B 71, 233104 (2005).

Data & Media loading...


Article metrics loading...



Ultrafast demagnetization of ferromagnetic metals can be achieved by a heat pulse propagating in the electron gas of a non-magnetic metal layer, which absorbs a pump laser pulse. Demagnetization by electronic heating is investigated on samples with different thicknesses of the absorber layer on nickel. This allows us to separate the contribution of thermalized hot electrons compared to non-thermal electrons. An analytical model describes the demagnetization amplitude as a function of the absorber thickness. The observed change of demagnetization time can be reproduced by diffusive heat transport through the absorber layer.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd