Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/5/10.1063/1.4964892
1.
E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, “ Ultrafast spin dynamics in ferromagnetic nickel,” Phys. Rev. Lett. 76, 42504253 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4250
2.
C. Boeglin, E. Beaurepaire, V. Halte, V. Lopez-Flores, C. Stamm, N. Pontius, H. A. Dürr, and J.-Y. Bigot, “ Distinguishing the ultrafast dynamics of spin and orbital moments in solids,” Nature 465, 458461 (2010).
http://dx.doi.org/10.1038/nature09070
3.
B. Y. Mueller, T. Roth, M. Cinchetti, M. Aeschlimann, and B. Rethfeld, “ Driving force of ultrafast magnetization dynamics,” New J. Phys. 13, 123010 (2011).
http://dx.doi.org/10.1088/1367-2630/13/12/123010
4.
A. Fognini, T. Michlmayr, G. Salvatella, C. Wetli, U. Ramsperger, T. Bähler, F. Sorgenfrei, M. Beye, A. Eschenlohr, N. Pontius, C. Stamm, F. Hieke, M. Dell'Angela, S. D. Jong, R. Kukreja, N. Gerasimova, V. Rybnikov, A. Al-Shemmary, H. Redlin, J. Raabe, A. Föhlisch, H. A. Dürr, W. Wurth, D. Pescia, A. Vaterlaus, and Y. Acremann, “ Ultrafast reduction of the total magnetization in iron,” Appl. Phys. Lett. 104, 032402 (2014).
http://dx.doi.org/10.1063/1.4862476
5.
M. Battiato, K. Carva, and P. M. Oppeneer, “ Superdiffusive spin transport as a mechanism of ultrafast demagnetization,” Phys. Rev. Lett. 105, 027203 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.027203
6.
A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel, K. Holldack, R. Mitzner, A. Föhlisch, P. M. Oppeneer, and C. Stamm, “ Ultrafast spin transport as key to femtosecond demagnetization,” Nat. Mater. 12, 332 (2013).
http://dx.doi.org/10.1038/nmat3546
7.
R. J. Elliott, “ Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors,” Phys. Rev. 96, 266279 (1954).
http://dx.doi.org/10.1103/PhysRev.96.266
8.
D. Steiauf and M. Fähnle, “ Elliott-Yafet mechanism and the discussion of femtosecond magnetization dynamics,” Phys. Rev. B 79, 140401 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.140401
9.
B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M. Fähnle, T. Roth, M. Cinchetti, and M. Aeschlimann, “ Explaining the paradoxical diversity of ultrafast laser-induced demagnetization,” Nat. Mater. 9, 259265 (2010).
http://dx.doi.org/10.1038/nmat2593
10.
B. Pfau, S. Schaffert, L. Müller, C. Gutt, A. Al-Shemmary, F. Büttner, R. Delaunay, S. Düsterer, S. Flewett, R. Frömter, J. Geilhufe, E. Guehrs, C. M. Günther, R. Hawaldar, M. Hille, N. Jaouen, A. Kobs, K. Li, J. Mohanty, H. Redlin, W. F. Schlotter, D. Stickler, R. Treusch, B. Vodungbo, M. Kläui, H. P. Oepen, J. Lüning, G. Grübel, and S. Eisebitt, “ Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls,” Nat. Commun. 3, 1100 (2012).
http://dx.doi.org/10.1038/ncomms2108
11.
A. Melnikov, I. Razdolski, T. O. Wehling, E. T. Papaioannou, V. Roddatis, P. Fumagalli, O. Aktsipetrov, A. I. Lichtenstein, and U. Bovensiepen, “ Ultrafast transport of laser-excited spin-polarized carriers in ,” Phys. Rev. Lett. 107, 076601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.076601
12.
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. Oppeneer, and M. Munzenberg, “ Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nano 8, 256260 (2013).
http://dx.doi.org/10.1038/nnano.2013.43
13.
A. J. Schellekens, K. C. Kuiper, R. R. J. C. de Wit, and B. Koopmans, “ Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation,” Nat. Commun. 5, 4333 (2014).
http://dx.doi.org/10.1038/ncomms5333
14.
G.-M. Choi, B.-C. Min, K.-J. Lee, and D. G. Cahill, “ Spin current generated by thermally driven ultrafast demagnetization,” Nat. Commun. 5, 4334 (2014).
http://dx.doi.org/10.1038/ncomms5334
15.
A. R. Khorsand, M. Savoini, A. Kirilyuk, and T. Rasing, “ Optical excitation of thin magnetic layers in multilayer structures,” Nat. Mater. 13, 101102 (2014).
http://dx.doi.org/10.1038/nmat3850
16.
A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel, K. Holldack, R. Mitzner, A. Föhlisch, P. M. Oppeneer, and C. Stamm, “ Reply to 'optical excitation of thin magnetic layers in multilayer structures,' ” Nat. Mater. 13, 102103 (2014).
http://dx.doi.org/10.1038/nmat3851
17.
B. Vodungbo, B. Tudu, J. Perron, R. Delaunay, L. Müller, M. H. Berntsen, G. Grübel, G. Malinowski, C. Weier, J. Gautier, G. Lambert, P. Zeitoun, C. Gutt, E. Jal, A. Reid, P. Granitzka, N. Jaouen, G. Dakovski, S. Moeller, M. Minitti, A. Mitra, S. Carron, B. Pfau, C. von Korff Schmising, M. Schneider, S. Eisebitt, and J. Lüning, “ Indirect excitation of ultrafast demagnetization,” Sci. Rep. 6, 18970 (2016).
http://dx.doi.org/10.1038/srep18970
18.
B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, “ Ultrafast magneto-optics in nickel: Magnetism or optics?,” Phys. Rev. Lett. 85, 844847 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.844
19.
P. M. Oppeneer and A. Liebsch, “ Ultrafast demagnetization in Ni: theory of magneto-optics for non-equilibrium electron distributions,” J. Phys.: Condens. Matter 16, 5519 (2004).
http://dx.doi.org/10.1088/0953-8984/16/30/013
20.
A. Fognini, G. Salvatella, R. Gort, T. Michlmayr, A. Vaterlaus, and Y. Acremann, “ The influence of the excitation pulse length on ultrafast magnetization dynamics in nickel,” Struct. Dyn. 2, 024501 (2015).
http://dx.doi.org/10.1063/1.4914891
21.
J. Garduño-Mejía, M. P. Higlett, and S. R. Meech, “ Modelling the influence of nonthermal electron dynamics in thin and ultrathin gold films,” Chem. Phys. 341, 276284 (2007).
http://dx.doi.org/10.1016/j.chemphys.2007.06.055
22.
Z. Lin, L. V. Zhigilei, and V. Celli, “ Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075133
23.
C. Ho, R. Powell, and P. Liley, J. Phys. Chem. Ref. Data 3, I-37, I-461 (1974).
24.
J. P. Landry, “ Optical oblique-incidence reflectivity difference microscopy: application to label-free detection of reactions in biomolecular microarrays,” Ph.D. thesis ( University of California, Davis, 2008).
25.
M. N. Polyanskiy, http://refractiveindex.info for Refractive index database; accessed 18 July 2016.
26.
S. V. Popov, Y. P. Svirko, and N. I. Zheludev, “ Pump–probe reflective polarization-sensitive nonlinear optics,” J. Opt. Soc. Am. B 13, 27292738 (1996).
http://dx.doi.org/10.1364/JOSAB.13.002729
27.
V. V. Kruglyak, R. J. Hicken, M. Ali, B. J. Hickey, A. T. G. Pym, and B. K. Tanner, “ Measurement of hot electron momentum relaxation times in metals by femtosecond ellipsometry,” Phys. Rev. B 71, 233104 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.233104
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/5/10.1063/1.4964892
Loading
/content/aca/journal/sdy/3/5/10.1063/1.4964892
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/5/10.1063/1.4964892
2016-10-12
2016-12-04

Abstract

Ultrafast demagnetization of ferromagnetic metals can be achieved by a heat pulse propagating in the electron gas of a non-magnetic metal layer, which absorbs a pump laser pulse. Demagnetization by electronic heating is investigated on samples with different thicknesses of the absorber layer on nickel. This allows us to separate the contribution of thermalized hot electrons compared to non-thermal electrons. An analytical model describes the demagnetization amplitude as a function of the absorber thickness. The observed change of demagnetization time can be reproduced by diffusive heat transport through the absorber layer.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/5/1.4964892.html;jsessionid=W9iuxLfmBDEmZ9cJlYphbucA.x-aip-live-03?itemId=/content/aca/journal/sdy/3/5/10.1063/1.4964892&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/5/10.1063/1.4964892&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/5/10.1063/1.4964892'
Right1,Right2,Right3,