Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/3/6/10.1063/1.4961953
1.
F. M. F. de Groot and A. Kotani , Core Level Spectroscopy of Solids, Advances in Condensed Matter Science Vol. 6 ( CRC Press, Boca Raton, 2008).
2.
C. Milne , T. Penfold , and M. Chergui , Coord. Chem. Rev. 277–278, 44 (2014).
http://dx.doi.org/10.1016/j.ccr.2014.02.013
3.
P. Å. Malmqvist , A. Rendell , and B. O. Roos , J. Phys. Chem. 94, 5477 (1990).
http://dx.doi.org/10.1021/j100377a011
4.
P. Å. Malmqvist , B. O. Roos , and B. Schimmelpfennig , Chem. Phys. Lett. 357, 230 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00498-0
5.
I. Josefsson , K. Kunnus , S. Schreck , A. Föhlisch , F. de Groot , P. Wernet , and M. Odelius , J. Phys. Chem. Lett. 3, 3565 (2012).
http://dx.doi.org/10.1021/jz301479j
6.
S. I. Bokarev , M. Dantz , E. Suljoti , O. Kühn , and E. F. Aziz , Phys. Rev. Lett. 111, 083002 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.083002
7.
E. Suljoti , R. Garcia-Diez , S. I. Bokarev , K. M. Lange , R. Schoch , B. Dierker , M. Dantz , K. Yamamoto , N. Engel , K. Atak et al., Angew. Chem., Int. Ed. 52, 9841 (2013).
http://dx.doi.org/10.1002/anie.201303310
8.
K. Atak , S. I. Bokarev , M. D. Gotz , and R. Golnak , J. Phys. Chem. B 117, 12613 (2013).
http://dx.doi.org/10.1021/jp408212u
9.
R. V. Pinjari , M. G. Delcey , M. Guo , M. Odelius , and M. Lundberg , J. Chem. Phys. 141, 124116 (2014).
http://dx.doi.org/10.1063/1.4896373
10.
N. Engel , S. I. Bokarev , E. Suljoti , R. Garcia-Diez , K. M. Lange , K. Atak , R. Golnak , A. Kothe , M. Dantz , O. Kühn et al., J. Phys. Chem. B 118, 1555 (2014).
http://dx.doi.org/10.1021/jp411782y
11.
S. I. Bokarev , M. Khan , M. K. Abdel-Latif , J. Xiao , R. Hilal , S. G. Aziz , E. F. Aziz , and O. Kühn , J. Phys. Chem. C 119, 19192 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b05169
12.
P. Wernet , K. Kunnus , I. Josefsson , I. Rajkovic , W. Quevedo , M. Beye , S. Schreck , S. Grubel , M. Scholz , D. Nordlund et al., Nature 520, 78 (2015).
http://dx.doi.org/10.1038/nature14296
13.
G. Grell , S. I. Bokarev , B. Winter , R. Seidel , E. F. Aziz , S. G. Aziz , and O. Kühn , J. Chem. Phys. 143, 074104 (2015).
http://dx.doi.org/10.1063/1.4928511
14.
R. V. Pinjari , M. G. Delcey , M. Guo , M. Odelius , and M. Lundberg , J. Comput. Chem. 37, 477 (2016).
http://dx.doi.org/10.1002/jcc.24237
15.
V. May and O. Kühn , Charge and Energy Transfer Dynamics in Molecular Systems, 3rd ed. ( Wiley-VCH, Weinheim, 2011).
16.
M. Schröter , S. D. Ivanov , J. Schulze , S. P. Polyutov , Y. Yan , T. Pullerits , and O. Kühn , Phys. Rep. 567, 1 (2015).
http://dx.doi.org/10.1016/j.physrep.2014.12.001
17.
K. A. Villiers , C. H. Kaschula , T. J. Egan , and H. M. Marques , J. Biol. Inorg. Chem. 12, 101 (2006).
http://dx.doi.org/10.1007/s00775-006-0170-1
18.
K. Atak , R. Golnak , J. Xiao , E. Suljoti , M. Pflüger , T. Brandenburg , B. Winter , and E. F. Aziz , J. Phys. Chem. B 118, 9938 (2014).
http://dx.doi.org/10.1021/jp505129m
19.
R. Golnak , J. Xiao , K. Atak , M. Khan , E. Suljoti , and E. F. Aziz , J. Phys. Chem. B 119, 3058 (2015).
http://dx.doi.org/10.1021/jp509966q
20.
R. Golnak , J. Xiao , K. Atak , J. S. Stevens , A. Gainar , S. L. M. Schroeder , and E. F. Aziz , Phys. Chem. Chem. Phys. 17, 29000 (2015).
http://dx.doi.org/10.1039/C5CP04529K
21.
J. Megow , M. I. S. Rohr , M. Schmidt am Busch , T. Renger , R. Mitric , S. Kirstein , J. P. Rabe , and V. May , Phys. Chem. Chem. Phys. 17, 6741 (2015).
http://dx.doi.org/10.1039/C4CP05945J
22.
Y. Luo , H. Ågren , and F. Gel'mukhanov , Phys. Rev. A 53, 1340 (1996).
http://dx.doi.org/10.1103/PhysRevA.53.1340
23.
M. J. Frisch , G. W. Trucks , H. B. Schlegel , G. E. Scuseria , M. A. Robb , J. R. Cheeseman , G. Scalmani , V. Barone , B. Mennucci , G. A. Petersson et al., Gaussian09, Rev. D01, Gaussian Inc., Wallingfort, CT, 2009.
24.
F. Aquilante , J. Autschbach , R. K. Carlson , L. F. Chibotaru , M. G. Delcey , L. De Vico , I. Fdez. Galván , N. Ferré , L. M. Frutos , L. Gagliardi et al., J. Comput. Chem. 37, 506 (2016).
http://dx.doi.org/10.1002/jcc.24221
25.
B. O. Roos , R. Lindh , P. A. Malmqvist , V. Veryazov , and P.-O. Widmark , J. Phys. Chem. A 109, 6575 (2005).
http://dx.doi.org/10.1021/jp0581126
26.
B. O. Roos , R. Lindh , P. A. Malmqvist , V. Veryazov , and P.-O. Widmark , J. Phys. Chem. A 108, 2851 (2004).
http://dx.doi.org/10.1021/jp031064+
27.
P.-O. Widmark , P. A. Malmqvist , and B. Roos , Theor. Chim. Acta 77, 291 (1990).
http://dx.doi.org/10.1007/BF01120130
28.
M. Douglas and N. M. Kroll , Ann. Phys. 82, 89 (1974).
http://dx.doi.org/10.1016/0003-4916(74)90333-9
29.
B. A. Hess , Phys. Rev. A 33, 3742 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.3742
30.
S. I. Bokarev , M. Dantz , E. Suljoti , K. Atak , B. Winter , O. Kühn , and E. F. Aziz , Phys. Rev. Lett. 112, 129303 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.129303
31.
S. Mukamel , Principles of Nonlinear Optical Spectroscopy ( Oxford University Press, New York, 1995).
32.
Y. Zhang , J. D. Biggs , and S. Mukamel , J. Mod. Opt. 61, 558 (2014).
http://dx.doi.org/10.1080/09500340.2014.899734
33.
Y. Zhang , W. Hua , K. Bennett , and S. Mukamel , Top. Curr. Chem. 368, 273 (2015).
http://dx.doi.org/10.1007/128_2014_618
http://aip.metastore.ingenta.com/content/aca/journal/sdy/3/6/10.1063/1.4961953
Loading
/content/aca/journal/sdy/3/6/10.1063/1.4961953
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/3/6/10.1063/1.4961953
2016-08-30
2016-12-06

Abstract

The Frenkel exciton model was adapted to describe X-ray absorption and resonant inelastic scattering spectra of polynuclear transition metal complexes by means of the restricted active space self-consistent field method. The proposed approach allows to substantially decrease the requirements on computational resources if compared to a full supermolecular quantum chemical treatment. This holds true, in particular, in cases where the dipole approximation to the electronic transition charge density can be applied. The computational protocol was applied to the calculation of X-ray spectra of the hemin complex, which forms dimers in aqueous solution. The aggregation effects were found to be comparable to the spectral alterations due to the replacement of the axial ligand by solvent molecules.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/3/6/1.4961953.html;jsessionid=xR2IuFfN4SX88xudO8W9GeDJ.x-aip-live-02?itemId=/content/aca/journal/sdy/3/6/10.1063/1.4961953&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/3/6/10.1063/1.4961953&pageURL=http://scitation.aip.org/content/aca/journal/sdy/3/6/10.1063/1.4961953'
Right1,Right2,Right3,