1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A midsize tokamak as a fast track to burning plasmas
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/1/10.1063/1.3554331
1.
1. ITER Technical Basis (ITER EDA Documentation Series No. 24) (Vienna, IAEA, 2002).
2.
2. B. Coppi , et al., Phys. Scr. 45, 112 (1992).
http://dx.doi.org/10.1088/0031-8949/45/2/010
3.
3. R. J. Hawryluk, Rev. Mod. Phys. 70, 537 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.537
4.
4. J. Wesson, Tokamaks (Clarendon Press, Oxford, 1997).
5.
5. ITER Physics Expert Groups on Confinement and Transport, Nucl. Fusion 39, 2175 (1999).
http://dx.doi.org/10.1088/0029-5515/39/12/302
6.
6. S. I. Krasheninnikov , et al., Phys. Plasmas 10, 1678 (2003).
http://dx.doi.org/10.1063/1.1558293
7.
7. L. E. Zakharov, , et al., Fusion Eng. Des. 72, 149 (2004).
http://dx.doi.org/10.1016/j.fusengdes.2004.07.015
8.
8. W. Horton, Rev. Mod. Phys. 71, 735 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.735
9.
9. J. W. Connor and H. R. Wilson, Plasma Phys Controlled Fusion 36, 719 (1994).
http://dx.doi.org/10.1088/0741-3335/36/5/002
10.
10. M. Greenwald, , et al., Nucl. Fusion 28, 2199 (1988).
http://dx.doi.org/10.1088/0029-5515/28/12/009
11.
11. D. K. Mansfield , et al., Phys. Plasmas 3, 1892 (1996).
http://dx.doi.org/10.1063/1.871984
12.
12. H. W. Kugel , et al., J. Nucl. Mater. 390-391, 1000 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.01.262
13.
13. M. G. Bell , et al., Plasma Phys. Controlled Fusion 51, 124054 (2009).
http://dx.doi.org/10.1088/0741-3335/51/12/124054
14.
14. R. Maingi , et al., Phys. Rev. Lett. 103, 075001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.075001
15.
15. R. Majeski , et al., Phys. Rev. Lett. 97, 075002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.075002
16.
16. A. W. Leonard, Fusion Sci. Technol. 48, 1083 (2005).
17.
17. Z. W. Friis , et al., Phys Plasmas 17, 022507 (2010).
http://dx.doi.org/10.1063/1.3305809
18.
18. F. Tenney and G. Lewis, in A Fusion Power Plant, edited by R. G. Mills (Princeton Plasma Physics Laboratory MATT Report 1050, 1974), p. 75.
19.
19. M. Kotschenreuther , et al., Phys Plasmas 14, 072502 (2007).
http://dx.doi.org/10.1063/1.2739422
20.
20. D. D. Ryutov, Phys Plasmas 14, 064502 (2007).
http://dx.doi.org/10.1063/1.2738399
21.
21. L. B. Begrambekov and O. I. Buzhinsk, Plasma Devices and Operations 15, 193 (2007).
http://dx.doi.org/10.1080/10519990701450657
22.
22. W. Eckstein , et al., Sputtering data, Max-Planck-Institut fur Plasmaphysik, Report IPP 9/82 (1993).
23.
23. S. L. Milora, , et al., Nucl. Fusion 35, 967 (1995).
http://dx.doi.org/10.1088/0029-5515/35/6/I04
24.
24. P. T. Lang , et al., Phys. Rev. Lett. 79, 1487 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1487
25.
25. L. R. Baylor , et al., Phys Plasmas 7, 1878 (2000).
http://dx.doi.org/10.1063/1.874011
26.
26. J. Li , et al., Plasma Phys. Controlled Fusion 42, 135 (2000).
http://dx.doi.org/10.1088/0741-3335/42/2/306
27.
27. J. Bucalossi , et al., Proc. 19th Int. Conf. on Fusion Energy (Lyon, France, 2002) (Vienna, IAEA, 2002).
28.
28. V. A. Soukhanovskii , et al., Rev. Sci. Instrum. 75, 4320 (2004).
http://dx.doi.org/10.1063/1.1787579
29.
29. V. Rozhansky , et al., Nucl. Fusion 46, 367 (2006).
http://dx.doi.org/10.1088/0029-5515/46/2/019
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/1/10.1063/1.3554331
Loading
/content/aip/journal/adva/1/1/10.1063/1.3554331
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/1/10.1063/1.3554331
2011-03-01
2014-07-28

Abstract

This paper describes the conceptual design of a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (≥ 10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This can be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a different magnetic divertor from those currently employed in present experiments is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/1/1.3554331.html;jsessionid=68m0m3ftinprq.x-aip-live-03?itemId=/content/aip/journal/adva/1/1/10.1063/1.3554331&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A midsize tokamak as a fast track to burning plasmas
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/1/10.1063/1.3554331
10.1063/1.3554331
SEARCH_EXPAND_ITEM