1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Convection-enhanced water evaporation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/1/10.1063/1.3554333
1.
1. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Rev. Mod. Phys. 81, 739 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.739
2.
2. J. C. Maxwell, Diffusion, collected scientific papers (Encyclopedia Britannica, Cambridge, 1877).
3.
3. I. Langmuir, Phys. Rev. 12, 368 (1918).
http://dx.doi.org/10.1103/PhysRev.12.368
4.
4. R. G. Picknett and R. Bexon, J. Colloid Interface Sci. 61, 336 (1977).
http://dx.doi.org/10.1016/0021-9797(77)90396-4
5.
5. K. S. Birdi, D. T. Vu, and A. Winter, J. Phys. Chem. 93, 3702 (1989).
http://dx.doi.org/10.1021/j100346a065
6.
6. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature (London) 389, 827 (1997).
http://dx.doi.org/10.1038/39827
7.
7. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Phys. Rev. E 62, 757 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.756
8.
8. H. Hu and R. G. Larson, J. Phys. Chem. B 106, 1334 (2002).
http://dx.doi.org/10.1021/jp0118322
9.
9. C. Poulard, O. Bénichou, and A. M. Cazabat, Langmuir 19, 8828 (2003).
http://dx.doi.org/10.1021/la030162j
10.
10. C. Poulard, G. Guéna, A. M. Cazabat, A. Boudaoud, and M. B. Amar, Langmuir 21, 8226 (2005).
http://dx.doi.org/10.1021/la050406v
11.
11. C. Poulard, G. Guéna, and A. M. Cazabat, J. Phys.: Condens. Matter 17, S4213 (2005).
http://dx.doi.org/10.1088/0953-8984/17/49/015
12.
12. D. M. Soolaman and H.-Z. Yu, J. Phys. Chem. B 109, 17967 (2005).
http://dx.doi.org/10.1021/jp051182s
13.
13. N. Shahidzadeh-Bonn, S. Rafaï, A. Azouni, and D. Bonn, J. Fluid Mech. 549, 307 (2006).
http://dx.doi.org/10.1017/S0022112005008190
14.
14. G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, J. Fluid Mech. 623, 329 (2009).
http://dx.doi.org/10.1017/S0022112008005004
15.
15. T. Furuta, M. Sakai, T. Isobe, and A. Nakajima, Langmuir 25, 11998 (2009).
http://dx.doi.org/10.1021/la902848s
16.
16. E. Rabani, D. R. Reichman, P. L. Geissler, and L. E. Brus, Nature (London) 426, 271 (2003).
http://dx.doi.org/10.1038/nature02087
17.
17. I. Leizerson, S. G. Lipson, and A. V. Lyushnin, Nature (London) 422, 395 (2003).
http://dx.doi.org/10.1038/422395b
18.
18. W. L. Tsai, P. C. Hsu, Y. Hwu, C. H. Chen, L. W. Chang, J. H. Je, H. M. Lin, A. Groso, and G. Margaritondo, Nature (London) 417, 139 (2002).
http://dx.doi.org/10.1038/417139a
19.
19. B. M. Weon, J. H. Je, Y. Hwu, and G. Margaritondo, Phys. Rev. Lett. 100, 217403 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.217403
20.
20. B. M. Weon, J. H. Je, Y. Hwu, and G. Margaritondo, Appl. Phys. Lett. 92, 104101 (2008).
http://dx.doi.org/10.1063/1.2892078
21.
21. B. M. Weon, J. H. Je, Y. Hwu, and G. Margaritondo, J. Synchrotron Rad. 15, 660 (2008).
http://dx.doi.org/10.1107/S0909049508025363
22.
22. B. M. Weon and J. H. Je, Phys. Rev. E 82, 015305 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.015305
23.
23. M. Taylor, A. J. Urquhart, M. Zelzer, M. C. Davies, and M. R. Alexander, Langmuir 23, 6875 (2007).
http://dx.doi.org/10.1021/la070100j
24.
24. Y. F. Yano and T. Iijima, J. Chem. Phys. 112, 9607 (2000).
http://dx.doi.org/10.1063/1.481577
25.
25. L. Hołysz, M. Mirosław, K. Terpiłowski, and A. Szczes, Annales UMCS, Chemistry 63, 223 (2008).
http://dx.doi.org/10.2478/v10063-009-0011-5
26.
26. K. Hisatake, S. Tanaka, and Y. Aizawa, J. Appl. Phys. 73, 7395 (1993);
http://dx.doi.org/10.1063/1.354031
26.K. Hisatake, M. Fukuda, J. Kimura, M. Maeda, and Y. Fukuda, J. Appl. Phys. 77, 6664 (1995).
http://dx.doi.org/10.1063/1.359079
27.
27. E. Berthier, J. Warrick, H. Yu, and D. J. Beebe, Lab Chip 8, 860 (2008).
http://dx.doi.org/10.1039/b717423c
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/1/10.1063/1.3554333
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic illustration of a high-resolution dual X-ray imaging by combination of transmission (TI) and reflection imaging (RI). (b) An example of an evaporating nanoliter water droplet (429 nL). This method allows precise measurements of droplet geometry (from TI) and complete evaporation time tf (from RI). For instance, tf = 208.2 s when the trace of the water film, as marked by an arrow in 120 s, completely disappears. (c) Initial conditions of nanoliter (2 to 700 nL) water droplets on silicon wafer: R0 = 100–1000 μm and contact angle θ0 = 20–50 deg.

Image of FIG. 2.

Click to view

FIG. 2.

Temporal evolutions of contact radius R (circles) and contact angle θ (squares) for each event. The temporal evolutions show slightly different evaporation modes depending on the initial volumes. R and θ follow power-law scaling of R = Rc(tf – t)α and θ = θc(tf – t)β for each event, as empirically suggested (solid lines).

Image of FIG. 3.

Click to view

FIG. 3.

(a) Correlation of α and β (squares) from all events shows that convection (α + β = 1) is more dominant than diffusion (2α + β = 1) in nanoliter water evaporation. (b) Evaporation rate as a function of R (gray dots) is well fitted to (–dV/dt) = AR2 for each event by adjusting A values, consistently suggesting convective evaporation. There is an inverse proportionality between A and initial R as A ≈ 0.0037R0 −1.12 ± 0.11, as shown by the solid line in inset.

Loading

Article metrics loading...

/content/aip/journal/adva/1/1/10.1063/1.3554333
2011-03-01
2014-04-19

Abstract

Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplets. This suggests that convection of water vapor would enhance water evaporation at nanoliter scales, for instance, on microdroplets or inside nanochannels.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/1/1.3554333.html;jsessionid=4u5lkr5bbtbci.x-aip-live-06?itemId=/content/aip/journal/adva/1/1/10.1063/1.3554333&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Convection-enhanced water evaporation
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/1/10.1063/1.3554333
10.1063/1.3554333
SEARCH_EXPAND_ITEM