Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/1/10.1063/1.3556121
1.
1.A. L. Barabási et al., Science 286, 509 (1999).
http://dx.doi.org/10.1126/science.286.5439.509
2.
2.R. Albert et al., Rev. Mod. Phys. 74, 47 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.47
3.
3.R. Albert et al., Nature 401, 130 (1999).
http://dx.doi.org/10.1038/43601
4.
4.J. Zhang et al., Phys. Rev. Lett. 96, 238701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.238701
5.
5.Y Yang et al., Phys.A 387, 1381 (2008)
http://dx.doi.org/10.1016/j.physa.2007.10.055
6.
6.Z K Gao et al., Phys. Rev. E, 79, 066303 (2009)
http://dx.doi.org/10.1103/PhysRevE.79.066303
7.
7.Y. Shimada et al., Articial Neural Networks - ICANN 2008, Lecture Notes In Computer Science. 5163, 61 (2008)
http://dx.doi.org/10.1007/978-3-540-87536-9
8.
8.X. Xu et al., Proc. Nat. Acad. Sci. 105, 19601 (2008).
http://dx.doi.org/10.1073/pnas.0806082105
9.
9.C. Liu et al., arXiv: 0912.2016 (2009)
10.
10.R. V. Donner et al., New Journal of Physics 12, 033025 (2010)
http://dx.doi.org/10.1088/1367-2630/12/3/033025
11.
11.J. Wu et al., Proc. 6th Int. Congress Traffic and Transportation Studies. ASCE, Reston, 397 (2008)
12.
12.Z K Gao et al., Chaos, 19, 033137 (2009)
http://dx.doi.org/10.1063/1.3227736
13.
13.L. Lacasa et al., Proc. Nat. Acad. Sci. 105, 4972 (2008).
http://dx.doi.org/10.1073/pnas.0709247105
14.
14.Z K Gao et al., Phys. Rev. E, 82, 016210 (2010)
http://dx.doi.org/10.1103/PhysRevE.82.016210
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/1/10.1063/1.3556121
Loading
/content/aip/journal/adva/1/1/10.1063/1.3556121
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/1/10.1063/1.3556121
2011-03-01
2016-12-06

Abstract

In this paper, we compare two methods of mapping time series data to complex networks based on correlation coefficient and distance, respectively. These methods make use of two different physical aspects of large-scale data. We find that the method based on correlation coefficient cannot distinguish the randomness of a chaotic series from a purely random series, and it cannot express the certainty of chaos. The method based on distance can express the certainty of a chaotic series and can distinguish a chaotic series from a random series easily. Therefore, the distance method can be helpful in analyzingchaotic systems and random systems. We have also discussed the effectiveness of the distance method with noisy data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/1/1.3556121.html;jsessionid=E2SiDtL0ToebhxT8k-5ThE7n.x-aip-live-03?itemId=/content/aip/journal/adva/1/1/10.1063/1.3556121&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/1/10.1063/1.3556121&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/1/10.1063/1.3556121'
Right1,Right2,Right3,